• 제목/요약/키워드: 시간압력

Search Result 1,877, Processing Time 0.032 seconds

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

A numerical Study for Improvement of Indoor Air Quality of Apartment House (공동주택 단지의 실내 공기질 향상을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-530
    • /
    • 2009
  • This study has been made to execute a research in order to lead the improvement of indoor air quality, examining the indoor ventilation characteristics by using a numerical analysis method. To this end an extensive parametric investigation are made according to various external flow variables such as main wind direction and wind speed by season, building layout design, and location of ventilators, etc. in Daedeok Techno Valley, one of large-scaled apartment in Daejeon. It is observed there was a significant difference of main wind direction between summer and winter. The main wind direction in summer was a south wind, and on the contrary the direction in winter is northnorthwest, which is similar to the average main wind direction for 10 years. One of the important calculation results is that the change of wind direction causes a significant effect on the apartment ventilation by the change of pressure difference around each complex of apartment. In case of favorable area of ventilation, the indoor ventilation rate can meet 0.7 ACH from the standard value only with natural ventilation. On the contrary, in other area the value was much lower than the standard value. If the calculation result applies to the design of layout apartment or placement of ventilators, it will be greatly helpful to the energy saving because it can be parallel with the natural ventilation to help securing ventilation rate, not much depending on the mechanical ventilation.

The Fundamental Studies and Development of the Modified See - Through Hollow Cathode Glow Discharge Cell for Atomic Emission Spectrochemical Analysis (원자 방출 분광 분석을 위한 개선된 관통형 속빈 음극관 글로우 방전 셀 개발 및 기초 연구)

  • Lee, Sung-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Borden, Stuart;Kim, Kyu-Whan;Lee, Change-Su;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.502-508
    • /
    • 2002
  • See-through hollow cathode glow discharge cell has been developed for the trace analysis of metal ions. The systems consists of new glow discharge cell improved the cooling system. In the case of previous type of hollow cathode glow discharge cell, it had been utilized for the trace analysis of metal ions but it had a problem that the plasma becomes unstable by air-cooled device. In this study, the modified hollow cathode glow discharge cell has been developed in order to minimize the problem associated with the air-cooled device. thus the stability of the plasma with water-cooling device has been improved and also the higher plasma temperature has been measured. The fundamental characteristics of modified systems have been investigated. And the discharge parameters, such as discharge pressure, material, and diameter of cathode, have been studied to find optimum discharge conditions.

Study on the Synthesis Method of Simulated CRUD for Chemical Decontamination in NPPs (원전 화학제염을 위한 모의크러드 제조방법 연구)

  • Kang, Duk-Won;Kim, Jin-Kil;Kim, Kyeong-Sook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • As nuclear power plants are getting older, interests on a decontaminating process are increasingly attracting more attention. Chemical decontamination is crucial to lower the production of radioactive waste and radiation dose rate. Prior to this, oxidizers and detergents for target material should be chosen so as to decontaminate major systems and components of a nuclear power plant chemically. In order to decontaminate it properly, it is crucial to have information about the chemical composition and crystalline structure of CRUD, analyzing its samples from the target or the decontamination system with components. However, there is no program which enables the extraction of samples directly from the object or the decontamination system with components carrying genuine radioactivity. Therefore, it is limited to samples from corrosion products carrying partial radioactivity as a resource. The composition of CRUD varies considerably depending on refueling cycle because it is closely related to the constituent of basic material. After settling a target, it is crucial to analyze and obtain analytical information about CRUD as a decontamination target. In this paper, various technologies for manufacturing simulated CRUD are introduced as alternatives to unattained samples. A metal oxide or metal hydroxide was used to synthesize simulated cruds having chemical compositions and crystalline stricture similar to the actual one by 12 different methods. CRUD 4(metal oxides in the autoclave vessel) and CRUD 10(metal oxides in a crucible after hydrazing pretreatment)were chosen as the best method for Type 1 and Type 2.respectively. As these CRUD can be synthesized easily without using any specialized equipment or reagents in a short time and in large quantities, they are expected to stimulate the development of decontaminating agents and processes.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.

Cost-Benefit Analysis Method for Ageing Equipment of Chemical Plants Using Risk Assessment (위험성평가를 이용한 노후설비에 대한 비용 편익분석 방법)

  • Jung, Soomin;Jung, Changmo;Kang, Seok-Min;Chae, Seungbeen;Kang, Seung-Gyun;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.84-92
    • /
    • 2020
  • Most facilities in chemical plants operate in environments that are outside the range of temperature and pressure that can be encountered on a daily basis, and are vulnerable to aging due to these stresses and environmental conditions. The facilities exposed to these conditions are not only likely to fail due to cumulative damage, but also lead to accidents if maintenance and replacement are not performed.Recommendation guidelines called risk-based inspection are widely used around the world-wide. However, limits exist for facilities that have already elapsed for a certain. As a result of the survey on the aging of Ulsan industrial complex in Korea, which carries out proper inspection, many of the facilities have been used for 20 years. Also, most of the facilities where the accident occurred have been in operation for more than 20 years. Therefore, this study suggested criteria for classifying devices that have exceeded a certain period of use as obsolete facilities. In addition, quantitative risk assessment was conducted. The safety investment method using the cost-benefit analysis method was proposed in order to calculate the loss cost and reduce the risk by expressing the risks of the corresponding aged facility as an Economic index. By utilizing the method of cost-benefit analysis of old facilities using the quantitative risk assessment presented in this study, it can be expected to improve the performance and life of old facilities, improve production efficiency and reliability of the system of facilities, change the recognition of safety management costs, increase employee stability, and reduce loss costs.

Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin (GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Kim, Dae-Gil;Kim, Sang-Il;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.258-265
    • /
    • 2014
  • By replacing the previous metal connector on the joints of timber structure, the GFRP reinforced laminated wooden pin was produced using a wooden material and Glass fiber reinforced plastic(GFRP) composite laminate. In addition, using the reinforced wooden pin, the tensile type shear strength test was conducted. Based on the result of the bending strength test of the reinforced laminated wooden pin according to the GFRP arrangement, a specimen(Type-A) with a single insertion of GFRP for each layer have shown the most favorable performance. Also, it was verified that densified specimen hot pressed for an hour at the temperature of $150^{\circ}C$ and with the oppression pressure $1.96N/mm^2$ have shown the improved performance of 1.57 times than the specimen without the densification. And in the bending strength test considering the load direction, edgewise have shown a higher performance of 3.51 times than the flatwise. A shear strength test was conducted using the Type-A reinforced laminated wooden pin which have shown a moderate performance on the test. Based on the test conducted by differentiating the type of the joint plate and the connector, compared to the specimen(Type-DS) applied with the drift pin and steel plate, the specimen( Type-WL) applied with the GFRP reinforced laminated wooden pin and GFRP reinforced wooden laminated plate have shown 1.12 times higher shear strength and also have shown an excellent toughness even after the maximum load.

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

A Study on the Treatment of Wastewater from Ion Removal Process for Purifying Electrocoat Paint in the Bath by Use of Reverse Osmosis (역삼투압을 이용한 전착도료 정제공정폐수처리에 관한 연구)

  • 김진성
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 1998
  • To treat effectively EDIR (electrodeposition ion removal) wastewater in terms of CO$_{Mn}$ 1,500~2,000 ppm generated from aluminum painting process, a RO (reverse osmosis) process was designed and installed to recover and reuse the concentrated solvent sent back to the electrocodeposition tank while the permeate reused as rinse water. A RO system in which three polyamide-spiral wound modules ($102\Phi \times 1,016L$ mm) connnected in series had been running to treat 20 m$^3$ in waste volume in 3 days batch operation at the condition of system recovery of 30 %, applied pressure 11.5 $kg_f/cm^2$ and room temperature. During 42 hours continuous operation leading to 5-fold decrease in waste volume, nearly constant permeation flux of 390 l/m$^2$-hr was maintained and the permeate with average CO$_{Mn}$, 300 ppm was obtained which could be used for washing the remaining paint solution in ion-exchange tower instead of demineralized water. Also COD$_{Mn}$ rejection as a function of running time was observed to be in the range of 78~87 % and the observed solvent rejections for ethyl cellusolve, buthyl cellusolve and n-butanol were 79 %, 87 % and 70 %, respectively.

  • PDF

CMOS 소자 응용을 위한 Plasma doping과 Silicide 형성

  • Choe, Jang-Hun;Do, Seung-U;Seo, Yeong-Ho;Lee, Yong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.456-456
    • /
    • 2010
  • CMOS 소자가 서브마이크론($0.1\;{\mu}m$) 이하로 스케일다운 되면서 단채널 효과(short channel effect), 게이트 산화막(gate oxide)의 누설전류(leakage current)의 증가와 높은 직렬저항(series resistance) 등의 문제가 발생한다. CMOS 소자의 구동전류(drive current)를 높이고, 단채널 효과를 줄이기 위한 가장 효율적인 방법은 소스 및 드레인의 얕은 접합(shallow junction) 형성과 직렬 저항을 줄이는 것이다. 플라즈마 도핑 방법은 플라즈마 밀도 컨트롤, 주입 바이어스 전압 조절 등을 통해 저 에너지 이온주입법보다 기판 손상 및 표면 결함의 생성을 억제하면서 고농도로 얕은 접합을 형성할 수 있다. 그리고 얕은 접합을 형성하기 위해 주입된 불순물의 활성화와 확산을 위해 후속 열처리 공정은 높은 온도에서 짧은 시간 열처리하여 불순물 물질의 활성화를 높여주면서 열처리로 인한 접합 깊이를 얕게 해야 한다. 그러나 접합의 깊이가 줄어듦에 따라서 소스 및 드레인의 표면 저항(sheet resistance)과 접촉저항(contact resistance)이 급격하게 증가하는 문제점이 있다. 이러한 표면저항과 접촉저항을 줄이기 위한 방안으로 실리사이드 박막(silicide thin film)을 형성하는 방법이 사용되고 있다. 본 논문에서는 (100) p-type 웨이퍼 He(90 %) 가스로 희석된 $PH_3$(10 %) 가스를 사용하여 플라즈마 도핑을 실시하였다. 10 mTorr의 압력에서 200 W RF 파워를 인가하여 플라즈마를 생성하였고 도핑은 바이어스 전압 -1 kV에서 60 초 동안 실시하였다. 얕은 접합을 형성하기 위한 불순물의 활성화는 ArF(193 nm) excimer laser를 통해 $460\;mJ/cm^2$의 에니지로 열처리를 실시하였다. 그리고 낮은 접촉비저항과 표면저항을 얻기 위해 metal sputter를 통해 TiN/Ti를 $800/400\;{\AA}$ 증착하고 metal RTP를 사용하여 실리사이드 형성 온도를 $650{\sim}800^{\circ}C$까지 60 초 동안 열처리를 실시하여 $TiSi_2$ 박막을 형성하였다. 그리고 $TiSi_2$의 두께를 측정하기 위해 TEM(Transmission Electron Microscopy)을 측정하였다. 화학적 결합상태를 분석하기 위해 XPS(X-ray photoelectronic)와 XRD(X-ray diffraction)를 측정하였다. 접촉비저항, 접촉저항과 표면저항을 분석하기 위해 TLM(Transfer Length Method) 패턴을 제작하여 I-V 특성을 측정하였다. TEM 측정결과 $TiSi_2$의 두께는 약 $580{\AA}$ 정도이고 morphology는 안정적이고 실리사이드 집괴 현상은 발견되지 않았다. XPS와 XRD 분석결과 실리사이드 형성 온도가 $700^{\circ}C$에서 C54 형태의 $TiSi_2$ 박막이 형성되었고 가장 낮은 접촉비저항과 접촉저항 값을 가진다.

  • PDF