• Title/Summary/Keyword: 시간기반 추론 알고리즘

Search Result 65, Processing Time 0.022 seconds

An Efficient RDF Query Validation for Access Authorization in Subsumption Inference (포함관계 추론에서 접근 권한에 대한 효율적 RDF 질의 유효성 검증)

  • Kim, Jae-Hoon;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.422-433
    • /
    • 2009
  • As an effort to secure Semantic Web, in this paper, we introduce an RDF access authorization model based on an ontology hierarchy and an RDF triple pattern. In addition, we apply the authorization model to RDF query validation for approved access authorizations. A subscribed SPARQL or RQL query, which has RDF triple patterns, can be denied or granted according to the corresponding access authorizations which have an RDF triple pattern. In order to efficiently perform the query validation process, we first analyze some primary authorization conflict conditions under RDF subsumption inference, and then we introduce an efficient query validation algorithm using the conflict conditions and Dewey graph labeling technique. Through experiments, we also show that the proposed validation algorithm provides a reasonable validation time and when data and authorizations increase it has scalability.

Design and Implementation of Machine Learning System for Fine Dust Anomaly Detection based on Big Data (빅데이터 기반 미세먼지 이상 탐지 머신러닝 시스템 설계 및 구현)

  • Jae-Won Lee;Chi-Ho Lin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.55-58
    • /
    • 2024
  • In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

Implementation of FPGA-based Accelerator for GRU Inference with Structured Compression (구조적 압축을 통한 FPGA 기반 GRU 추론 가속기 설계)

  • Chae, Byeong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.850-858
    • /
    • 2022
  • To deploy Gate Recurrent Units (GRU) on resource-constrained embedded devices, this paper presents a reconfigurable FPGA-based GRU accelerator that enables structured compression. Firstly, a dense GRU model is significantly reduced in size by hybrid quantization and structured top-k pruning. Secondly, the energy consumption on external memory access is greatly reduced by the proposed reuse computing pattern. Finally, the accelerator can handle a structured sparse model that benefits from the algorithm-hardware co-design workflows. Moreover, inference tasks can be flexibly performed using all functional dimensions, sequence length, and number of layers. Implemented on the Intel DE1-SoC FPGA, the proposed accelerator achieves 45.01 GOPs in a structured sparse GRU network without batching. Compared to the implementation of CPU and GPU, low-cost FPGA accelerator achieves 57 and 30x improvements in latency, 300 and 23.44x improvements in energy efficiency, respectively. Thus, the proposed accelerator is utilized as an early study of real-time embedded applications, demonstrating the potential for further development in the future.

Design and Implementation of Rule-based Routing Configuration Fault Management System (규칙 기반 라우팅 구성 장애 관리 시스템의 설계 및 구현)

  • 황태인;황태인;안성진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1085-1095
    • /
    • 2000
  • In this paper, we have defined the rules and the algorithm for diagnosis and recovery of routing configuration fault on a system. By using them, we have implemented the Java-based system that can manage routing configuration fault automatically. To manage routing configuration fault, the production rule for network configuration management, the production rule for routing configuration fault diagnosis, and the production rule for routing configuration fault recovery have been proposed. Rule-based routing configuration fault management system has been implemented on the basis of backward chaining algorithm and applied for meta rules for the purpose of interconnecting the production rules. We have derived the experimental result from transition process of the rules, the Blackboard, the goals based on scenarios. Through the implementation of dynamically applicable system in heterogeneous and rapidly changing network environments, we have proposed the methodology for network configuration fault management. Also, we expect that network configuration manager can reduce time and cost wasted for routing configuration fault management.

  • PDF

A New Incremental Instance-Based Learning Using Recursive Partitioning (재귀분할을 이용한 새로운 점진적 인스턴스 기반 학습기법)

  • Han Jin-Chul;Kim Sang-Kwi;Yoon Chung-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.127-132
    • /
    • 2006
  • K-NN (k-Nearest Neighbors), which is a well-known instance-based learning algorithm, simply stores entire training patterns in memory, and uses a distance function to classify a test pattern. K-NN is proven to show satisfactory performance, but it is notorious formemory usage and lengthy computation. Various studies have been found in the literature in order to minimize memory usage and computation time, and NGE (Nested Generalized Exemplar) theory is one of them. In this paper, we propose RPA (Recursive Partition Averaging) and IRPA (Incremental RPA) which is an incremental version of RPA. RPA partitions the entire pattern space recursively, and generates representatives from each partition. Also, due to the fact that RPA is prone to produce excessive number of partitions as the number of features in a pattern increases, we present IRPA which reduces the number of representative patterns by processing the training set in an incremental manner. Our proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory.

Classification and Analysis of Data Mining Algorithms (데이터마이닝 알고리즘의 분류 및 분석)

  • Lee, Jung-Won;Kim, Ho-Sook;Choi, Ji-Young;Kim, Hyon-Hee;Yong, Hwan-Seung;Lee, Sang-Ho;Park, Seung-Soo
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.279-300
    • /
    • 2001
  • Data mining plays an important role in knowledge discovery process and usually various existing algorithms are selected for the specific purpose of the mining. Currently, data mining techniques are actively to the statistics, business, electronic commerce, biology, and medical area and currently numerous algorithms are being researched and developed for these applications. However, in a long run, only a few algorithms, which are well-suited to specific applications with excellent performance in large database, will survive. So it is reasonable to focus our effort on those selected algorithms in the future. This paper classifies about 30 existing algorithms into 7 categories - association rule, clustering, neural network, decision tree, genetic algorithm, memory-based reasoning, and bayesian network. First of all, this work analyzes systematic hierarchy and characteristics of algorithms and we present 14 criteria for classifying the algorithms and the results based on this criteria. Finally, we propose the best algorithms among some comparable algorithms with different features and performances. The result of this paper can be used as a guideline for data mining researches as well as field applications of data mining.

  • PDF

Continuous Multiple Prediction of Stream Data Based on Hierarchical Temporal Memory Network (계층형 시간적 메모리 네트워크를 기반으로 한 스트림 데이터의 연속 다중 예측)

  • Han, Chang-Yeong;Kim, Sung-Jin;Kang, Hyun-Syug
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Stream data shows a sequence of values changing continuously over time. Due to the nature of stream data, its trend is continuously changing according to various time intervals. Therefore the prediction of stream data must be carried out simultaneously with respect to multiple intervals, i.e. Continuous Multiple Prediction(CMP). In this paper, we propose a Continuous Integrated Hierarchical Temporal Memory (CIHTM) network for CMP based on the Hierarchical Temporal Memory (HTM) model which is a neocortex leraning algorithm. To develop the CIHTM network, we created three kinds of new modules: Shift Vector Senor, Spatio-Temporal Classifier and Multiple Integrator. And also we developed learning and inferencing algorithm of CIHTM network.

A New RED Algorithm Adapting Automatically in Various Network Conditions (다양한 네트워크 환경에 자동적으로 적응하는 RED 알고리즘)

  • Kim, Dong-Choon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.461-467
    • /
    • 2014
  • Active queue management (AQM) algorithms run on routers and detect incipient congestion by typically monitoring the instantaneous or average queue size. When the average queue size exceeds a certain threshold, AQM algorithms infer congestion on the link and notify the end systems to back off by proactively dropping some of the packets arriving at a router or marking the packets to reduce transmission rate at the sender. Among the existing AQM algorithms, random early detection (RED) is well known as the representative queue-based management scheme by randomizing packet dropping. To reduce the number of timeouts in TCP and queuing delay, maintain high link utilization, and remove bursty traffic biases, the RED considers an average queue size as a degree of congestions. However, RED do not well in the specified networks conditions due to the fixed parameters($P_{max}$ and $TH_{min}$) of RED. This paper addresses a extended RED to be adapted in various networks conditions. By sensing network state, $P_{max}$ and $TH_{min}$ can be automatically changed to proper value and then RED do well in various networks conditions.

Prediction Algorithm of Threshold Violation in Line Utilization using ARIMA model (ARIMA 모델을 이용한 설로 이용률의 임계값 위반 예측 기법)

  • 조강흥;조강홍;안성진;안성진;정진욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1153-1159
    • /
    • 2000
  • This paper applies a seasonal ARIMA model to the timely forecasting in a line utilization and its confidence interval on the base of the past data of the lido utilization that QoS of the network is greatly influenced by and proposes the prediction algorithm of threshold violation in line utilization using the seasonal ARIMA model. We can predict the time of threshold violation in line utilization and provide the confidence based on probability. Also, we have evaluated the validity of the proposed model and estimated the value of a proper threshold and a detection probability, it thus appears that we have maximized the performance of this algorithm.

  • PDF