• Title/Summary/Keyword: 승온흡착

Search Result 33, Processing Time 0.018 seconds

Effects for Coexistent Reductant to NOx Adsorption and Desorption of the NOx Storage Catalyst (공존 환원제가 NOx 흡장촉매의 NOx 흡$\cdot$ 탈착에 미치는 영향)

  • Lee, Choon-Hee;Choi, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.181-187
    • /
    • 2005
  • The behavior of fox adsorption and desorption of the NOx storage catalyst supported on Ba additive were studied by the TPA/TPD experiments and reactivity tests. Applying the transient responses and NOx TPA/TPD test by CLD were effective methods to analyze the characteristics of the NOx storage catalyst. NOx variation of the NOx storage catalyst in the lean air/fuel conditions according to temperature was dominated by NOx adsorption and desorption rather than catalytic reduction. The presence of reductants in the lean mixture promoted the NOx desorption at the $500^{\circ}C$ higher temperature. The temperatures for maximum NOx conversion with CH4 and $C_3H_6$ as a rich spike reductant appear around $500^{\circ}C\;and\; 400^{\circ}C$ respectively.

The Study of Adsorption and Decomposition Reaction on the Sulfided Mo Single Crystal Surface (황화된 Mo 단결정 표면에서 Furan의 흡착 및 분해반응 연구)

  • ;Philip R. Watson
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.150-155
    • /
    • 1995
  • Mo 단결정 표면에 황을 흡착시켜 형성된 상층구조를 AES와 LEED로써 연구하였다. 황의 피복률은 sulfur gun으로부터 생성되는 S2 flux로써 조절하였으며, 여러 가지 흡착된 황의 상층구조를 LEED로써 관찰하였다. 황화된 Mo 표면에서 탈산소반응(HDO)의 모델 분자로서, Furan의 흡착과 반응을 승온반응분광법(TPRS)으로 조사하였다. 낮은 온도에서 Furan 분자의 헤테로 원자는 직접 이탈하여 안정한 기체상의 반응 생성물인 일산화탄소를 형성하였으며, 이 반응은 Mo의 (100) 및 (110)면에서 각각 깨끗한 표면 및 황화된 표면에 관계없이 일어났다. 이를 바탕으로 Mo 표면에서 Furan의 분해반응에 대한 메카니즘을 제안하였다.

  • PDF

Investigation of SO2 Adsorption Capacity of the Activated Carbon with O2-NH3 Treatment (O2-NH3 처리로 인한 활성탄의 SO2 흡착능 조사)

  • 고윤희;서경원;박달근
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.76-84
    • /
    • 1995
  • 본 연구에서는 코코넛 껍질로부터 제조한 활성탄을 열 및 산소-암모니아의 혼합가스로 전처리하여 표면의 특성 변화와 이산화황 흡착능에 미치는 영향을 살펴보았다. 전처리한 활성탄으로 이산화황 흡착실험을 수행한 결과, 전처리한 활성탄은 기본 활성탄 시료보다 높은 흡착능력을 보였다. 본 연구의 전처리 실험에서는 산소와 암모니아를 주입하여 활성점을 제공하는 산소와 환원성 분위기를 조성하는 질소관능기를 도입하였다. 전처리 조건은 0∼25%의 암모니아와 473∼1273K의 온도이며 처리조건을 변화시킴으로써 표면 기능의 척도가 되는 세공구조와 원소조성 및 표면 관능기 등에 직접적인 영향을 주었다. 흡착능력은 고정층 반응기에서 전자 비틀림 저울로 이산화황 흡착량을 측정하여 비교하였고, 이 과정 중의 활성탄 표면의 특성변화를 원소분석, 승온탈착법, 산-염기 적정법, 주사현미경법 등의 분석 방법을 통해서 알아보았다. 그 결과, 이산화황의 최대 흡착 능력은 온도조건 973∼1173K에서 나타났다. 또한, 암모니아로 처리하지 않은 활성탄에 비하여 암모니아로 처리한 활성탄은 그 주입농도에 관계없이 이산화황의 흡착제거율을 약 48% 정도 향상시켰다.

  • PDF

A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구)

  • Choi, Sung Yeol;Jang, Young Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.765-771
    • /
    • 2018
  • In this study, the optimization of carbonization conditions in manufacturing processes was performed to improve the absorption performance of sewage sludge based sorbent used for treating $H_2S$ out of all odorous substances generated by various environmental facilities. Adsorbents applied were manufactured from the sewage treatment plant under different carbonization conditions, such as temperature and heating rate, and the correlation between the adsorption performance and physical properties of the adsorbents was verified. As a result, the adsorption performance of sludge at $900^{\circ}C$ with a heating rate of $10^{\circ}C/min$ was the best, and the SEM and BET analysis revealed that specific surface area and characteristics of pore (size, volume) were major parameters for the adsorption. In addition, the effect of K ions used for improving the adsorption performance of the optimum carbonization condition sorbent was insignificant for the sewage sludge based sorbent.

Suppression of surface $SiO_2$ layer and Solid Phase Epitaxy of Si films Using heating-up under $Si_2H_6$ environment (승온시 $Si_2H_6$ 가스 주입을 이용한 표면 $SiO_2$의 억제 및 비정질 Si의 고상 에피텍시에 관한 연구)

  • 최태희;남승의;김형준
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.239-244
    • /
    • 1996
  • We firstly report that formation of $SiO_2$ layer on Si surface can be effectively prevented by flowing the $Si_2H_6$ gas during the heating-up procedure for amorphous Si depositions. In this way, amorphously deposited Si layer onto crystalline Si substrates can be grown epitaxially during the post-deposition heat treatments. The suppression of surface $SiO_2$ can be explained in terms of adsorption of SiHx adspecies, instead of oxygen from residual gases in the reactors, to Si surfaces after desorption of hydrogen from H-passivated Si surfaces. Employing $Si_2H_6$ flowing and soild phase epitaxial growth, high-quality epitaxial Si layer can be obtained at low temperatures below $600^{\circ}C$ without conventional high temperature cleaning procedures.

  • PDF

Oxidative Dehydrogenation of n-Butenes over BiFe0.65MoP0.1 Oxide Catalysts Prepared with Various Synthesis Method (다양한 합성 방법으로 제조된 BiFe0.65MoP0.1 산화물 촉매 상에서 n-부텐의 산화탈수소화 반응)

  • Park, Jung-Hyun;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • To investigate the effect of the catalyst synthesis method on the oxidative dehydrogenation (ODH) of nbutenes, $BiFe_{0.65}MoP_{0.1}$ oxide catalysts were prepared with various synthesis methods such as co-precipitation, citric acid method, hydrothermal method, and surfactant templated method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $NH_3/1$-butene-temperature programmed desorption ($NH_3/1$-butene-TPD) to correlate with catalytic activity in ODH reaction. Among the catalysts studied here, $BiFe_{0.65}MoP_{0.1}$ oxide catalyst prepared with co-precipitation method marked the highest activity showing 1-butene conversion, 79.5%, butadiene selectivity, 85.1% and yield, 67.7% after reaction for 14 h. From the result of $NH_3$-TPD, the catalytic activity is closely related to the acidity of the $BiFe_{0.65}MoP_{0.1}$-x oxide catalyst and acidity of the $BiFe_{0.65}MoP_{0.1}$ oxde catalyst prepared with co-precipitation method was higher than that of other catalysts. In addition, combined with the 1-butene TPD, the higher catalytic activity is closely related to the amount of weakly adsorbed intermediate (< $200^{\circ}C$) and the desorbing temperature of strongly adsorbed intermediates (> $200^{\circ}C$).

Comparative Study on Adsorptive Removal of Organic Sulfur Compounds over Cu-Exchanged NaY Zeolites (구리로 이온교환된 NaY 제올라이트에 의한 유기 황 화합물들의 흡착제거 비교연구)

  • Jung, Gap Soon;Lee, Suk Hee;Cheon, Jae Kee;Park, Dong Ho;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.534-539
    • /
    • 2010
  • The adsorptive removal of organic sulfur compounds including tert-butylmercaptane(TBM), tetrahydrothiophene(THT) and dimethylsulfide(DMS) in methane was investigated over NaY and copper-exchanged NaY(CuNaY) zeolites at 303 K and atmospheric pressure. In the ternary adsorption system, the preferential adsorption of THT over other sulfur compounds on NaY and the concurrent adsorption of all sulfur compounds on CuNaY were achieved, which could be explained by the breakthrough curve, the temperature-programmed desorption, and the apparent activation energy for desorption. The sulfur uptake capacity of CuNaY(2.90~3.20 mmol/g) was much higher than that of NaY(0.70~0.90 mmol/g). A comparative study indicated that the $Cu^{1+}$ sites and acidity of CuNaY were probably responsible for the strong interaction with sulfur atom and high sulfur uptake abilities.

Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon (정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교)

  • Lee, Choul Ho;Park, Nayoung;Kim, Goun;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through $N_2$-adsorption, XRD, XRF, and $NH_3$-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.

Adsorption and Desorption Characteristics of Binary-component Volatile Organic compounds (Toluene-MEK) on Activated Carbon (이성분 휘발성유기화합물(Toluene-MEK)의 활성탄 흡착 및 탈착 특성)

  • Yu, Seon A;Cho, Jong Hoon;Park, Ji Yun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.421-428
    • /
    • 2017
  • In this study, we have investigated the characteristics of adsorption and desorption of toluene, methyl ethyl ketone (MEK) and their binary component using activated carbon. The BET analysis was performed to identify the characteristics of the activated carbon, and the desorption characteristics with temperature were examined to find out an optimum desorption temperature. Ten cyclic experiments of adsorption-desorption were performed, where each adsorption temperature was maintained at room temperature and desorption temperature at upto $120^{\circ}C$. In case of single component cyclic test, the efficiencies of adsorption and desorption decreased as the cycle increased. MEK which has lower affinity with activated carbon than toluene showed lower efficiencies of adsorption and desorption. In case of binary component cyclic test, a typical roll-up phenomenon was observed during adsorption process, where MEK reaches at breakpoint first and then was swept out by toluene.

A Study of Pt-Mg/Mesoporous Aluminosilicate Catalysts for Synthesis of Jet-fuel from n-Octadecane (n-Octadecane 으로부터 항공유 제조를 위한 Pt-Mg/mesoporous aluminosilicate 촉매 연구)

  • Jung, Euna;Kim, Chul-Ung;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.712-718
    • /
    • 2016
  • Platinum catalysts supported on the mesoporous material synthesized from Y zeolite were applied to synthesis of jet-fuel through n-octadecane hydroupgrading. The mesoporous aluminosolicate, $MMZ_{HY}$ was synthesized using Y zeolite as its framework source. The effect of the addition of Mg to $Pt/MMZ_{HY}$ catalyst for n-octadecane hydroupgrading was investigated. Catalyst characterization was performed with X-ray diffraction, $N_2$ adsorption, temperature-programmed reduction in hydrogen flow, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The high yield of jet-fuel over the $PtMg(2.0)/MMZ_{HY}$ can be attributed not only to the higher dispersion of Pt metal and higher reducibility, but also the higher amount of acid sites and higher strength of acid sites. The selectivity to iso-paraffin in the jet-fuel fraction could be reached above 80% over the optimized $PtMg/MMZ_{HY}$ catalyst.