DOI QR코드

DOI QR Code

Oxidative Dehydrogenation of n-Butenes over BiFe0.65MoP0.1 Oxide Catalysts Prepared with Various Synthesis Method

다양한 합성 방법으로 제조된 BiFe0.65MoP0.1 산화물 촉매 상에서 n-부텐의 산화탈수소화 반응

  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2014.08.22
  • Accepted : 2014.10.11
  • Published : 2015.06.01

Abstract

To investigate the effect of the catalyst synthesis method on the oxidative dehydrogenation (ODH) of nbutenes, $BiFe_{0.65}MoP_{0.1}$ oxide catalysts were prepared with various synthesis methods such as co-precipitation, citric acid method, hydrothermal method, and surfactant templated method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $NH_3/1$-butene-temperature programmed desorption ($NH_3/1$-butene-TPD) to correlate with catalytic activity in ODH reaction. Among the catalysts studied here, $BiFe_{0.65}MoP_{0.1}$ oxide catalyst prepared with co-precipitation method marked the highest activity showing 1-butene conversion, 79.5%, butadiene selectivity, 85.1% and yield, 67.7% after reaction for 14 h. From the result of $NH_3$-TPD, the catalytic activity is closely related to the acidity of the $BiFe_{0.65}MoP_{0.1}$-x oxide catalyst and acidity of the $BiFe_{0.65}MoP_{0.1}$ oxde catalyst prepared with co-precipitation method was higher than that of other catalysts. In addition, combined with the 1-butene TPD, the higher catalytic activity is closely related to the amount of weakly adsorbed intermediate (< $200^{\circ}C$) and the desorbing temperature of strongly adsorbed intermediates (> $200^{\circ}C$).

n-부텐의 산화탈수소화에서 제조방법이 촉매의 반응활성에 미치는 영향을 조사하기 위하여 $BiFe_{0.65}MoP_{0.1}$ 산화물 촉매를 모델 촉매로 선정하여 공침법, 시트르산법, 수열합성법, 주형법 등의 방법으로 촉매를 제조하였다. 제조한 촉매의 물리 화학적 특성을 알아보고 반응 활성과 연관시키기 위하여 X-선 회절분석(XRD), 질소 흡착 탈착분석($N_2$ sorption), 암모니아/1-부텐-승온탈착분석($NH_3/1$-butene-TPD) 등의 특성분석을 수행하였다. 공침법으로 제조한 촉매의 활성이 가장 높게 관찰되었으며, 14시간 동안의 산화탈수소화 반응 기준으로 n-부텐의 전환율은 79.5%, 1,3-부타디엔의 선택도는 85.1%, 1,3-부타디엔 수율은 67.7%의 수치를 보였다. 암모니아 승온탈착 실험으로부터 촉매의 반응 활성은 촉매의 산특성과 밀접하게 관련이 있으며, 공침법으로 제조한 산화물 촉매가 다른 합성방법으로 제조한 촉매와 비교하여 가장 큰 산량을 갖는 것으로 관찰되었다. 또한, 1-부텐의 승온탈착 분석결과, 촉매의 활성은 흡착된 1-부텐과 촉매의 표면반응에 기인한 중간체의 흡 탈착 특성, 즉 약하게 흡착된 중간체(< $200^{\circ}C$)의 상대적인 양과 강하게 흡착된 중간체의 탈착 온도(> $200^{\circ}C$)와 밀접하게 관련이 있었다.

Keywords

References

  1. White, W. C., "Butadiene Production Process Overview," Chem. Biol. Interact., 166, 10-14(2007). https://doi.org/10.1016/j.cbi.2007.01.009
  2. Bhasin, M. M., McCain, J. H., Vora, B. V., Imai, T. and Pujado, P. R., "Dehydrogenation and Oxydehydrogenation of Paraffins to Olefins," Appl. Catal. A: Gen., 221, 397-419(2001). https://doi.org/10.1016/S0926-860X(01)00816-X
  3. Lee, H. W., Jung, J. C., KIim, H. S., Chung, Y. M., Jim, T. J., Lee, S. J., Oh, S.-H., Kim, Y. S. and Song, I. K., "Effect of $CsxH_3$-xPW12O40 Addition oh the Catalytic Performance of $ZnFe_2O_4$ in the Oxidative Dehydrogenation of n-butene to 1,3-butadiene," Korean J. Chem. Eng., 26(4), 994-998(2009). https://doi.org/10.1007/s11814-009-0165-z
  4. Soares, A. P. V., Dimitrov, L. D., Oliveira, M. C.-R. A., Hilaire, L., Portela, M. F. and Grasselli, R. K., "Synergy Effects Between ${\beta}$ and ${\gamma}$ Phases of Bismuth Molybdates in the Selective Catalytic Oxidation of 1-butene," Appl. Catal. A: Gen., 253, 191-200(2003). https://doi.org/10.1016/S0926-860X(03)00524-6
  5. Park, J.-H., Noh, H. R., Park, J. W., Row, K. H. Jung, K. D. and Shin, C.-H., "Effect of Iron Content on Bismuth Molybdate for the Oxidative Dehydrogenation of n-butenes to 1,3-butadiene," Appl. Catal. A: Gen., 431-432, 137-143(2012). https://doi.org/10.1016/j.apcata.2012.04.028
  6. Jung, J. C., Lee, H. W. and Song, I. K., "Effect of Preparation Method of $Co_9Fe_3Bi_1Mo_{12}O_{51}$ on the Catalytic Performance in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene-Comparison Between Co-Precipitation Method and Citric Acid-Derived Sol-Gel Method," Catal. Lett., 128, 243-247(2009). https://doi.org/10.1007/s10562-008-9745-5
  7. Park, T.-J., "Oxidative Dehydrogenation of Butenes over Zinc Ferrite Catalysts," Ph.D. Thesis, Rice University, Texas(1987).
  8. Weng, L.-T. and Delmon, B., "Phase Cooperation anD Remote Control Effects in Selective Oxidation Catalysts," Appl. Catal. A: Gen., 81, 141-213(1992). https://doi.org/10.1016/0926-860X(92)80093-R
  9. Lee, H. W., Jung, J. C., Kim, H. S., Chung, Y.-M., Kim, T. J., Lee, S. J., Oh, S.-H., Kim, Y. S. and Song, I. K., "Effect of pH in the Preparation of $ZnFe_2O_4$ for Oxidative Dehydrogenation of nbutene to 1,3-butadiene: Correlation Between Catalytic Performance and Surface Acidity of $ZnFe_2O_4$," Catal. Commun., 9, 1137-1142 (2008). https://doi.org/10.1016/j.catcom.2007.10.023
  10. Marcu, I.-C., Sandulescu, I. and Millet, J.-M. M., "Effects of the Method of Preparing Titanium Pyrophosphate Catalyst on the Structure and Catalytic Activity in Oxidative Dehydrogenation of n-butane," J. Mol. Catal. A., 203, 241-250(2003). https://doi.org/10.1016/S1381-1169(03)00376-5
  11. Jung, J. C., Kim, H. S., Choi, A. S., Chung, Y.-M., Kim, T. J., Lee, S. J., Oh, S.-H. and Song, I. K., "Effect of pH in the Preparation of ${\gamma}$-$Bi_2MoO_6$ for Oxidative Dehydrogenation of n-butene to 1,3-butadiene: Correlation Between Catalytic Performance and Oxygen Mobility of ${\gamma}$-$Bi_2MoO_6$," Catal. Commun., 8, 625-628(2007). https://doi.org/10.1016/j.catcom.2006.08.019
  12. Park, J.-H., Noh, H. R., Park, J. W., Row, K. H., Jung, K. D. and Shin, C.-H., "Oxidative Dehydrogenation of n-butenes to 1,3-butadiene over $BiMoFe_{0.65}$Px Catalysts: Effect of Phosphorous Contents, Res. Chem. Interm., 37, 1125-1134(2011). https://doi.org/10.1007/s11164-011-0377-9
  13. Moro-Oka, Y. and Ueda, W., "Multicomponent Bismuth Molybdate Catalyst: A Highly Functionalized Catalyst System for the Selective Oxidation of Olefin," Adv. Catal., 40, 233-273(1994).
  14. He, D.-H., Ueda, W. and Moro-Oka, Y., "Promotion Effect of Molybdate Support on $Bi_2Mo_3O_{12}$ Catalyst in the Selective Oxidation of Propylene," Catal. Lett., 12, 35-44(1992). https://doi.org/10.1007/BF00767186
  15. Jung, J. C., Lee, H. W., Kim, H. S., Chung, Y.-M., Kim, T. J., Lee, S. J., Oh, S.-H. and Song, I. K., "Effect of pH in the Preparation of $Ni_9Fe_3Bi_1Mo_{12}O_{51}$ for Oxidative Dehydrogenation of n-butene to 1,3-butadiene: Correlation Between Catalytic Performance and Oxygen Mobility of $Ni_9Fe_3Bi_1Mo_{12}O_{51}$," Catal. Commun., 9, 943-949(2008). https://doi.org/10.1016/j.catcom.2007.09.024
  16. Ai, M., "The Relationship Between the Oxidation Activity and the Acid-base Properties of $Fe_2O_3$-based Mixed Oxides: II. The $Fe_2O_3$-$P_2O_5$, $Fe_2O_3$-$K_2O$, and $Fe_2O_3$-$Bi_2O_3$-$P_2O_5$ Systems," J. Catal., 60, 306-315(1979). https://doi.org/10.1016/0021-9517(79)90151-9
  17. Kung, H. H. and Kung, M. C., "Selective Oxidative Dehydrgenation of Butenes on Ferrite Catalysts," Adv. Catal., 33, 159-198(1985).
  18. Park, J.-H. and Shin, C.-H., "Oxidative Dehydrogenation of Butenes to Butadiene over Bi-Fe-Me (Me = Ni, Co, Zn, Mn and Cu)-Mo Oxide Catalysts," J. Ind. Eng. Chem., DOI No.: http://dx.doi.org/10.1016/j/jiec/2014.03.037.
  19. Veniaminov, S. A. and Barannik, G. B., "Intermediates in the Interaction of 1-butene and Butadiene with An Iron-antimony Oxide Catalyst," React. Kinet. Catal. Lett., 13, 413-418(1980). https://doi.org/10.1007/BF02065709
  20. Golunski, S. E. and Walker, A. P., "Mechanism of Low-Temperature Oxydehydrogenation of 1-Butene to 1,3-Butadiene over a Novel Pd-Fe-O Catalyst," J. Catal., 204, 209-218(2001). https://doi.org/10.1006/jcat.2001.3377

Cited by

  1. Catalyst: Effect of Phosphorous Precursors vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.824