• Title/Summary/Keyword: 습지 식물

Search Result 461, Processing Time 0.028 seconds

A Characteristic of Vegetation Distribution in Jangdo Wetland (장도 습지보호지역의 식생 분포 특성)

  • An, Kyung-Whan;Lim, Jeong-Cheol;Lee, Yeoul-Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.63-74
    • /
    • 2015
  • The purpose of this study is to provide the basis information for ecological conservation and restoration of Jangdo wetland conservation area through the survey of vegetation diversity and spatial distribution characteristics. Syntaxonomic account of plant communities were carried out field survey by Z.-M. school method at 14 sites and relationship analysis between plant community and environment variables with Principal Coordinate Analysis (PCoA). Based on the floristic composition, all the plots were classified into xeric and hydric type and arranged in seven plant communities. Spatial distribution of plant communities is determined primarily by the soil moisture condition and amount of organic matter. Hydric vegetation is around 8% ($7,337m^2$) of the protected area and distributed swamp forest of dominating willows under 18 years. Proliferation of willows are recognised extended from edge to centre after in 1990's caused by fallow and control of livestock grazing on wetland. Jangdo wetland will have to readjust the protection boundary because wet meadow zone and swamp forest have been distributed outside the protection area.

A study on the classification and assessment of WangDungJae wetland type at Chiri National Park (지리산왕등재 습지의 유형분류와 평가에 관한 연구)

  • Jeon, Seung-Hoon;Kim, Yong-Sik;Cha, Yoon-Jung;Lee, Byung-Hee;Ko, Kwan;Shin, Hyun-Tak
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2000.04a
    • /
    • pp.164-164
    • /
    • 2000
  • 지리산왕등재 습지의 바람직한 관리를 위하여 미국야생생물보호청(US Fish & Wildlife Service)에서 개발한 습지 유형 분류방법론을 적용하여 유형분류와 평가를 수행하였다. 지리산왕등재 습지는 계(System), 아계(Subsystem), 강(Class), 아강(Subclass), 수영역(Water Regime), 수문지형 단위 (Hydrogeomorphic Units), 저질/우점유형 (Substrate/Dominants Type)의 계층적 분류체계에 따라 소호소습지생태계(Palustrine wetland system), 정수습지생태계 강, 영속형 정수식물 습지생태계 아강, 영구적으로 습윤한 수영역, 범주성 수화학(pH 6.1), 산악의 영구적인 초원 수문지형, 저질은 유기체 유형(이탄토)으로 사초과와 고랭이속이 우점하는 습지로 분류되었다. 지리산 왕등재 습지와 비교하여 대암산 용늪의 분류체계는 이끼/지의류 강, 이끼 아강, 영구적으로 습윤한 수영역, 산성의 수화학, 저질은 유기체 유형(이탄토)으로 물이끼가 우점하고 관속식물이 혼재하는 유형으로 분류되어 많은 차이가 난 반면, 무제치늪은 매우 유사한 습지유형으로 우점유형(진퍼리새 우점)과 특정 종에서만 차이가 났다.

  • PDF

Distribution of vascular plant in Mt. Cheonsung, Yangsan (양산 천성산지역 관속식물의 분포)

  • Shin, Hyun-Tak;Lee, Jae-Yoon
    • Korean Journal of Plant Resources
    • /
    • v.22 no.2
    • /
    • pp.180-194
    • /
    • 2009
  • 588 taxa of vascular plants including 121 families, 399 genera, 510 species, 67 varieties, 2 subspecies, 7 forma, and 2 hybrid species were investigated in Mt. Cheonsung. Among them, 116 species were newly added in this research. The area for Gyeongbu High-speed Railway passes Mujechi 3, 4, 5, and 6 and Daeseongsa around the wetlands were investigated 6 species of rare and endangered plants, 9 species of endemic plants and 37 species of special flora plants in Mt. Cheonsung. Appear due to the construction of the Gyeongbu High-speed Railway vegetation changes, especially about the impact of wetland plants for long-term monitoring is expected to need. Moreover, plant preservation plan about water source change in upper wetland should be established.

A Study on Water Quality Improvement of Hoeya Dam Reservoir Using Ecological Constructed Wetland (생태적 인공습지를 이용한 회야댐 수질개선에 관한 연구)

  • Lee, Sang-Hyeon;Cho, Yun-Chul
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.489-497
    • /
    • 2011
  • In this study the main purpose is to reduce non-point source pollution and improve water quality of Hoeya reservoir using constructed wetlands. As part of the efforts to improve water quality of the reservoir, cattail and reed-wetland cells were constructed in front of the reservoir to remove nitrogen(N) and phosphorus(P). Also, effects of hydraulic and seasonal variation on removal efficiencies of N and P were investigated. Total P and N removal efficiencies of the wetland system were approximately 20.7% and 42.7%, respectively. Removal efficiencies of N and P during the growth season (july to august) and blooming season of cattail and reed (september to october) were higher than other seasons. These results suggest that wetland system could be an effective alternative for control of non-point source pollutnat such as N and P of reservoir.

Water Quality, Flora and Fauna of 7 Wetlands in Donghae City (동해시 7개 습지의 수질과 동식물상)

  • Han, Gab-Soo;Park, Jung Ho
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.335-352
    • /
    • 2014
  • In this study, we investigated and analysed the water quality, distribution of the vegetation and the wildlife to seven wetlands in Donghae city. As a result, most of the wetlands was found to be very poor water quality and some specific pollutants from entering the wetland. A total of 234 taxa on vegetation were identified including 207 species, 24 varieties, 3 formaes, 168 genera and 69 families. 2 species were recorded as designated rare plant of Korea Forest Service. The naturalized plants were 27 species. The urbanization rate of naturalization index was 8.4% and 11.6% respectively. The number of benthic macroinvertebrate taxa was 35 species, 26 families, 12 orders, 5 classes and 3 phylums. Rare species were recorded 3 species. Taxa for fishes were 5 family and 5 species. Endangered wildlife was found 1 species. Most wetlands in Donghae city were the relatively small in size, and some wetlands were separately located from forest and river ecosystems. It was limited inflow and outflow of species into a wetland from the outside. However, various vegetation were found at whole wetlands and some special species also inhabited. The wetlands performed the role as a habitat of wild life.

The Effect of Plant Coverage on the Constructed Wetlands Performance and Development and Management of Macrophyte Communities (식생피도가 인공습지의 질소 및 인 처리효율에 미치는 영향과 습지식물의 조성 및 관리)

  • Ham, Jong-Hwa;Kim, Hyung-Chul;Koo, Won-Seok;Shin, Hyun-Bhum;Yun, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.393-402
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets (each set of 0.88 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at 0.3 ${\sim}$ 0.5 m and hydraulic retention time was managed to about 2 ${\sim}$ 5 days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 90%, even with no plantation, from bare soil surfaces at the initial stage. During the start up period of constructed wetlands, lower water levels should be maintained to avoid flooding newly plants, if wetland plants are to be started from germinating seeds. Effluent T-N concentration in low plant coverage wetland was higher in winter than high plant coverage wetland, whereas no T-P effluent concentration and removal efficiency difference was observed within 15% plant coverage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

Primary Production and Litter Decomposition of Macrophytes in the Sihwa Constructed Wetlands (시화호 인공습지에서 수생식물의 유기물 생산과 낙엽 분해)

  • Choi, Kwangsoon;Kim, Ho Joon;Kim, Dong Sub;Cho, Kang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • To provide the information for the wetland management considering the water treatment ability of macrophytes, the growth characteristics and primary production by reed (Phragmites australis) and cattail (Typha angustifolia), and the decomposition rate of organic matter produced were investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. The shoot height of P. australis and Typha angustifolia began to increase in March, and reached its peaks in July and August (340cm and 320cm, respectively). The shoot density of P. australis ranging $100{\sim}170EA/m^2$ was higher than that of T. angustifolia (max. $78EA/m^2$). Standing biomass of P. australis ranged from $1,350{\sim}1,980gDM/m^2$, with maximal biomass in Banwol Upper Wetland. And it was larger in upper wetlands than lower wetlands. On the other hand standing biomass of T. angustifolia ($1,940gDM/m^2$) was similar to that of P. australis in Banwol Upper Wetland. Primary productivity of P. australis was in the order of Banwol Upper Wetland ($2,050gDM/m^2/yr$) > Donghwa Lower Wetland ($1,840gDM/m^2/yr$) > Banwol Lowerr Wetland ($1,570gDM/m^2/yr$) ${\fallingdotseq}$ Donghwa Lower Wetland ($1,540gDM/m^2/yr$), and that of T. angustifolia ($2,210gDM/m^2/yr$) was higher than P. australis. Annual production of organic matter produced by P. australis and T. angustifolia was 845 ton DM/yr (423 ton C/yr), and about 90% was comprised of that by P. australis. From the litter decomposition rate (k) (P. australis: leaf 0.0062/day, stem 0.0018/day; T. angustifolia: leaf 0.0031/day, stem 0.0018/day), leaf was rapid degraded compare to stem in both P. australis and T. angustifolia. The litter decomposition rate of leaf was two times rapid P. australis than T. angustifolia, whereas that of stem was same in both. Annual litter decomposition amount of P. australis than T. angustifolia was 285 ton C/yr(67.3% of organic matter produced by macrophytes), indicating that 32.7% of organic matter produced by macrophytes is accumulated in the Sihwa CW.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

Vegetation Classification and Distributional Pattern in Damyang Riverine Wetland (담양하천습지의 식생유형과 분포양상)

  • Ahn, Kyunghwan;Lim, Jeongcheol;Lee, Youlkyung;Choi, Taebong;Lee, Kwangseok;Im, Myoungsoon;Go, Youngho;Suh, Jaehwa;Shin, Youngkyu;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • Damyang riverine wetland was designated as a wetland protected area in 2004; that is located in the Yeongsan river mainstream. Total 30 phytosociological releves at field studies were classified with 22 vegetation types including of 101 species (unidentified 1 species). Legends of actual vegetation map were separated by 6 types; riparian forest, substitute vegetation, synanthropic vegetation, wet meadow vegetation, open water, an area of wetland vegetation is about 35 % ($386,841.86m^2$). Results of this study area as follows. The plant society of Damyang riverine wetland was conjectured that it was formed by rapidly water environment change with installed weir on the upstream of protected area and operating of Damyang dam on top of the basin. Until recently, the terrace land on the river was used to cultivate, but that would be formed fallow vegetation scenery on riverfront caused by no cultivation after designated protected area. Paspalum distichum var. indutum community designated as invasive alien plant by Korea Ministry of Environment was widely developed and Myriophyllum spicatumunrecorded in the country as newly alien species was discovered in the study zone. The plants as lapped over developing environment for Leersia japonica must be occupied habitat of native plant species having similar niche. The various plant society in Damyang riverine wetland should be developed because of environmental changes, disturbances and damages of stream.

Soil Charateristics and Age Estimation of Sohwangbyung Wetland and Jilmoi Wetland in Mt. Odae (오대산의 소황병산늪과 질뫼늪의 토양 특성 및 습지 연대 분석)

  • Lim, Sung-Hwan;Choi, Sung-Chul;Hwang, Jeong-Sook;Choi, Deok-Gyun;Choo, Yeon-Sik
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.498-506
    • /
    • 2013
  • In order to identify soil characteristics and to estimate the age of wetland, soil samples of Mt. Sohwangbyoung wetland and Jilmoi wetland known as peatland in Odaesan National Park.were collected and analyzed. Soil pH of Mt. Sohwangbyoung wetland and Jilmoi wetland showed average pH of 5.5, and did now show any significant difference according to the time and plant community. Total ionic content of soil showed different values among plant communities, but no difference by time in each plant community. Soil exchangeable cations such as Na, K and Mg showed a similar pattern of total ionic content. Unlike other cations, however, Ca content showed significant differences according to the plant community and time. Soil organic matter and total nitrogen contents showed remarkable differences according to plant community, and especially showed very low valeus at the place where Sphagnum palustre distributes. Based on the results of the above, Mt. Sohwangbyoung wetland and Jilmoi wetland can be considered as weakly acidic bog. From age analysis, two wetlands are estimated to have been formed before 100 AD for Mt. Sohwangbyoung wetland and 1448 AD for Jilmoi wetland, respectively.