식생피도가 인공습지의 질소 및 인 처리효율에 미치는 영향과 습지식물의 조성 및 관리

The Effect of Plant Coverage on the Constructed Wetlands Performance and Development and Management of Macrophyte Communities

  • 발행 : 2005.09.30

초록

본 연구에서는 비점오염원 제어를 목적으로 조성한 인공습지의 현장실험 결과를 바탕으로 인공습지의 식생피도가 습지의 처리효율에 미치는 영향과 습지식물의 조성 및 관리방안에 대해 고찰하였다. 인공습지에 수생식물을 인공식재하지 않고 자연적인 활착을 유도한 결과 3번의 생장기를 거치면서 평균 약 90% 이상의 높은 식생피도를 얻을 수 있었으며, 원활한 식생활착을 위해서는 물 관리가 매우 중요한 것으로 나타났다. T-N, T-P의 제거율은 연 평균 약 45 ${\sim}$ 55% 정도로 높게 나타났으며, T-P는 생장기와 동절기 모두 비슷한 제거율을 나타낸 반면에, T-N의 제거율은 수온의 영향으로 동절기 동안 생장기보다 낮은 약 33%를 나타내었다. 약 15%의 범위 내에서 식생피도의 차이는 T-P의 처리효율에 영향을 미치지 않는 반면에, 동절기 T-N의 처리효율에 영향을 미쳐 식생피도가 낮은 습지가 처리효율 또한 낮게 나타났다. 이는 질산성질소의 탈질화에 필수적인 유기탄소가 식생피도가 낮은 습지에서 적게 공급되었기 때문이라 생각된다. 영양물질 제거를 위한 인공습지를 조성할 경우 습지 전체를 모두 식생으로 피복되도록 하는 것 보다는 약 10 ${\sim}$ 15% 범위 내에서 일부 구역을 개방수역 (open water)으로 처리하여 어류 및 물새들을 위한 서식공간을 제공하여도 영양물질 제거효율에는 큰 차이가 발생하지 않을 것으로 생각된다. 대규모로 인공습지를 조성할 경우에는 영양물질 제거량을 증대시키기 위해 식물체를 제거하는 관리방안은 수행하지 않는 것이 경제적으로나 습지의 관리적인 측면에서 좋을 것으로 생각된다.

The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets (each set of 0.88 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at 0.3 ${\sim}$ 0.5 m and hydraulic retention time was managed to about 2 ${\sim}$ 5 days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 90%, even with no plantation, from bare soil surfaces at the initial stage. During the start up period of constructed wetlands, lower water levels should be maintained to avoid flooding newly plants, if wetland plants are to be started from germinating seeds. Effluent T-N concentration in low plant coverage wetland was higher in winter than high plant coverage wetland, whereas no T-P effluent concentration and removal efficiency difference was observed within 15% plant coverage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

키워드

참고문헌

  1. 농업기반공사. 2003, 화옹지구 간척지개발사업: 환경영향평가 협의내용변경계획서
  2. 박수현. 1995. 한국귀화식물원색도감. 일조각, 서울
  3. 윤춘경, 권순국, 함종화, 노재경. 2000. 인공습지 오수처리시설 의 처리성능에 관한 연구. 한국농공학회지 42(4): 96-105
  4. 이영노. 1996. 원색한국식물도감. 교학사, 서울
  5. 이창복. 1999. 대한식물도감. 향문사, 서울
  6. 함종화, 윤춘경, 구원석, 김형철, 신현범. 2004. 인공습지를 이용 한 하구담수호 유입하천수 수질개선 현장실험결과 분석. 한국농공학회지 46(5): 141-153
  7. 함종화, 윤춘경, 구원석, 김형철, 신현범. 2005. 자유수면형 인공 습지에 의한 저농도 고유량의 하천수질개선 효과분석. 한국농공학회지 47(1): 79-91 https://doi.org/10.5389/KSAE.2005.47.1.079
  8. 환경부. 1999. 새만금호 수질보전종합대책 수립: 기초자료집
  9. APHA. 1998. Standard Methods for the Examination of Water and Wastewater (20th ed.). American Public Health Association, Washington
  10. Cooke, J.G. 1994. Nutrient transformations in a natural wetland receiving sewage effluent and the implications for waste treatment. Wat. Sci. Tech. 29: 209-217
  11. Davis, C.B and A.G. van der Valk. 1978. The decomposition of standing and fallen litter Typha glauca and Scirpus fluviatilis. Can. J. Bot. 56: 662-672 https://doi.org/10.1139/b78-073
  12. Gophal, B. and K.P. Sharma. 1984. Seasonal changes in concentration of major nutrient elements in the rhizomes and leaves of Typha elephantina Roxb. Aqut. Bot. 20: 65-73 https://doi.org/10.1016/0304-3770(84)90027-5
  13. Kadlec, R.H. and R.L. Knight. 1996. Treatment Wetlands. CRC press, FL
  14. Kim, S.Y. and P.M. Geary. 2001. The impact of biomass harvesting on phosphorus uptake by wetland plants. Wat. Sci. Tech. 44(11-12): 61-67
  15. Klopatek, J.M. 1978. Nutrient dynamics of freshwater riverine marshes and the role of emergent macrophytes, p. 195-216. In: Fresh wetlands, ecological processes and management potential (R.E. Good, D.F. Whigham, R.L. Simpson and C.G. Jackson, Jr, eds.). Academic Press, New York
  16. Metcalf & Eddy, Inc. 1991. Wastewater Engineering Treatment, Disposal, Reuse (3rd ed.). McGraw-Hill, New York
  17. Mitsch, W.J. 2002. Development of macrophyte communities and subsequent ecosystem function in two created wetlands: A whole-ecosystem experiment, p. 55-65. In Proceedings of the Nanjing Internatyional Wetlands Symposium (SWS, ed.). Society of Wetland Scientists. Nanjing
  18. Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands. John Wiley&Sons, New York
  19. Morris, J.T. and K. Lajtha. 1986. Decomposition and nutrient dynamics of litter from four species of freshwater emergent macrophytes. Hydrobiologia 131: 215- 223 https://doi.org/10.1007/BF00008857
  20. Morris, J.T. and W.B. Bowden. 1986. A medchanistic numerical model of sedimentation, mineralization, and decomposition for marsh sediments. Soil Sci. Soc. Am. J. 50: 96-105 https://doi.org/10.2136/sssaj1986.03615995005000010019x
  21. Reddy, K.R. and E.M. D'Angelo. 1994. Soil processes regulating water quality in wetlands, p. 309-324. In: Global Wetlands: Old World and New (W.J. Mitsch, ed.). Elsevier, Amsterdam
  22. Reed, S.C., R.W. Crites and E.J. Middlebrooks. 1995. Natural Systems for Waste Management and Treatment (2nd ed.). McGraw-Hill, New York
  23. Richardson, C.J. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228: 1424-1428 https://doi.org/10.1126/science.228.4706.1424
  24. Spieles, D.J. and W.J. Mitsch. 2000. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low and high nutrient riverine systems. Ecol. Eng. 14: 77-91
  25. Stengel, E., W. Carduck and C. Jebsen. 1987. Evidence for denitrification in artificial wetlands, p. 77-91. In: Aquatic Plants for Water Treatment and Resource Recovery (K.R. Reddy and W.H. Smith, eds.). Magnolia Publishing, Orlando
  26. U.S.EPA. 1989. Nonpoint sources: Agenda for the Future. U.S. Environmental Protection Agency, Office of Water, Washington
  27. van der Linden, M.J.H.A. 1986. Phosphorus economy of reed vegetation in the Suidelijk Flevoland polder (The Netherlands): Seasonal distribution of phosphorus among shoots and rhizomes and availability of soil phosphorus. Acta Oecologia Oecol. Plant 7: 397-405