• Title/Summary/Keyword: 습지식생

Search Result 374, Processing Time 0.024 seconds

An analysis of the genetic diversity of a riparian marginal species, Aristolochia contorta (수변 경계종인 쥐방울덩굴의 유전적 다양성 분석)

  • Nam, Bo Eun;Park, Hyun Jun;Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.100-105
    • /
    • 2020
  • Northern pipevine (Aristolochia contorta) commonly inhabits marginal areas between waterside and terrestrial vegetation. In particular, A. contorta is ecologically important in the marginal areas as a food plant of dragon swallowtail butterfly (Sericinus montela), which is designated as vulnerable species in the Republic of Korea. For long-term sustainability of the plant population, assessment of the genetic diversity of exist populations should be conducted. Genomic DNA of A. contorta leaf samples were extracted from four populations where the vigorous growth were observed in the South Korea. Intra-population genetic diversity and inter-population genetic distance were assessed using randomly amplified polymorphic DNA (RAPD) with five polymorphic random primers. Overall genetic diversity was lower, compared to other wetland species (h: 0.0607 ~ 0.1401; I: 0.0819 ~ 0.1759), while GP showed the highest intra-population genetic diversity. Despite of the geographical distance, GP showed the larger genetic distance from other populations. This result seemed to be caused by the fragmented habitat and lower sexual reproduction of A. controta. Mixture of the different source populations and construction of the proper environmental condition such as shade and physical support for sexual reproduction should be considered for conservation of A. contorta population.

Effect of Land Use on Urban Thermal Environments in Incheon, Korea (인천시에서 토지이용이 도시 열 환경에 미치는 영향)

  • Kong, Hak-Yang;Kim, Seog Hyun;Cho, Hyungjin
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.315-321
    • /
    • 2016
  • To identify the relationship between land use and thermal environment in an urban area, the air temperature was measured at different places of land use, and the changes of land use and air temperature were traced for 40 years in Incheon City. The relationship between land use and temperature was also investigated using satellite image data. The results of temperature measurements on a forest, a cropland (rice paddy), a bareland (school ground), and an urban area (asphalt road) from 19 to 21 August 2014 showed that air temperature was the highest on a pavement road. The temperature increased by about $1.4^{\circ}C$ ($0.035^{\circ}C/year$) for 40 years from 1975 to 2014 in Incheon. The changes in land use patterns of Incheon for the past 40 years showed that urban dry land, bareland and grassland have increased and cultivated land, wetland and forest land have decreased gradually. The land surface temperature (LST) was correlated with the normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) extracted from Landsat satellite image. The land surface temperature was lower at higher NDVI, and higher at higher NDBI. Therefore, it is important to conserve and restore the land use of greenery, wetlands, and agricultural land in order to mitigate the heat island effect and improve the thermal environment in an urban area.

Soil properties of barrier island habitats in the Nakdong river estuary (낙동강 하구 주요 사주 서식지 토양 특성)

  • Yi, Yong Min;Yeo, Un Sang;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.355-362
    • /
    • 2014
  • Changes of soil properties due to sedimentation and erosion in the river estuary may lead changes in environmental factors that affect plant growth and distribution, Then habitats in the river estuary that provide various ecological functions can also be influenced. Topsoil samples were analyzed in order to understand the soil properties of important barrier islands and habitat types in the Nakdong river estuary. The samples were obtained from Phragmites communis and Scirpus planiculmis habitats, the tidal flats in the southern area of Eulsukdo, and in Mangeummerydeung, Baekhapdeung, and Doyodeung. Analyses results showed that bulk density, pH, organic matter content and total nitrogen concentration which were directly or indirectly affected by vegetation showed significant difference (p<0.05) with habitat types but no differences in water content and oxidation reduction potential which could be affected by soil texture and showed significant difference among barrier islands. Results suggested that soil properties on barrier islands in the Nakdong river estuary were influenced first by geomorphic changes due to sedimentation and erosion, and then by the presence or type of vegetation. A range of physical and chemical properties were analyzed; soil water content and bulk density (physical properties), and organic content and pH (chemical properties) were correlated with seven other soil properties, at a level of significance higher than 90%. These aspects played an important role in determining overall soil properties in the studied area.

Biogeochemical Reactions in Hyporheic Zone as an Ecological Hotspot in Natural Streams (자연 하천의 생태학적 중요 지점으로서 지표수-지하수 혼합대의 생지화학적 기작)

  • Kim, Young-Joo;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • Hyporheic zone is an area where hydraulic exchanges occur between surface water and ground water. Such transient area is anticipated to facilitate diverse biogeochemical reactions by providing habitats for various microorganism. However, only a few data are available about microbial properties in hyporheic zone, which would be important in better understanding of biogeochemical reactions in whole streams. The study site is Naesung stream, located in the north Kyoung-Sang Province, of which sediment is sandy with little anthropogenic impacts. Soil samples were collected from a transect placed perpendicular to stream flow. The transect includes upland fringe area dominated by Phragmites japonica, bare soil, and soil adjacent to water. In addition, soil samples were also collected from downwelling and upwelling areas in hyporheic zone within the main channel. Soils were collected from 3 depth in each area, and water content, pH, and DOC were measured. Various microbial properties including extracellular enzyme activities ($\beta$-glucosidase, N-acetylglucosaminidase, phosphatase and arylsulfatase), and microbial community structure using T-RFLP were also determined. The results exhibited a positive correlation between water content and DOC, and between extracellular enzyme activities and DOC. Distinctive patterns were observed in soils adjacent to water and hyporheic zone compared with other soils. Overall results of study provided basic information about microbial properties of hyporheic zone, which appeared to be discernable from other locations in the stream corridor.

  • PDF

Distribution and Food Source Analysis of Galerucella nipponensis Laboissiere (일본잎벌레 (Galerucella nipponensis Laboissiere)의 분포와 먹이원 분석)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kwon, Yong-Su;Kim, Nam-sin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In this study, we explain the environmental variables that mainly influence the spatial and seasonal pattern of Galerucella nipponensis in 38 wetland and stream located at mid-low Nakdong River. G. nipponensis were found at total of 32 wetland, was strongly positively correlated with the biomass of Trapa japonica (t=2.173, $r^2=0.013$, p<0.05). In result of seasonal distribution during 3 years, the largest density of G. nipponensis adult were observed in summer (7~8 months), egg and larva was recorded in only early spring (4~5 months). Rainfall were negatively related with the seasonal distribution of G. nipponensis. They were more abundant in dry season (2015 year) than rainy seasons(2013~2014 year). Stable isotope analysis showed that the G. nipponensis consumed as food source no submerged leaf of T. japonica than other plant. However, utilization of T. japonica on Galerucella nipponensis were not influence to plant biomass and/or species composition in vegetated bed. Those considered as adaptive strategies for sustainable habitat maintenance that because T. japonica use as not only food source but also their lives for G. nipponensis.

Derivation of Sustainability Factors of LID Facility and Strategy of Citizen Participation for Management (LID 시설의 지속가능성 관리인자 도출 및 시민참여 관리방안)

  • Kim, Youngman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • LID(Low Impact Development) facility classified as a social infrastructure can maintain landscape sustainability and functional sustainability through continuous maintenance and management. Since LID is a natural-based solution, the sustainability can be secured through the management of weeds, wastes and vegetation. The LID facility is distributed in the city and is an infrastructure that can be managed through citizen participation because of simple maintenance. Therefore, this study was conducted to investigate the maintenance factors affecting the sustainability of the LID facilities and to suggest measures for maintenance by investigating the participation of the peoples. The factors for landscape sustainability were derived to waste and weed management. Also the factors for functional sustainability were assessed to identification and management of dead bodies and selection of applicable soil and plant species. The citizens showed high agreement of more than 80% in the questionnaires on expanding and managing LID facilities, enacting LID ordinances, and participating in the national movement. The intention to participate in LID management linked to jobs was about 64%, indicating that LID could become a job for the vulnerable. Maintenance of the LID can easily be carried out by non-specialists, which can lead to citizen participation with low cost for each facility. The maintenance cost for citizen participation can be allocated from the social infrastructure management cost reduced by LID application of the local government and the social welfare budget of the central government.

Assessment of CH4 oxidation in macroinvertebrate burrows of tidal flats (갯벌의 무척추 동물 서식굴 내 메탄산화 평가)

  • Kang, J.;Kwon, K.;Woo, H.J.;Choi, J.U.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • In tidal flats that lack plants, methane ($CH_4$) fluxes are both positive (gas emission) and negative (gas "sinking") in nature. The levels of methanotroph populations significantly affect the extent of $CH_4$ sinking. This preliminary study examined $CH_4$ flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the $CH_4$ and $CO_2$ concentrations were continuously monitored using a closed, diffuse $CH_4/CO_2$ flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level $CH_4$ production, likely due to diffusive emission of $CH_4$ in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has $CH_4$ oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed $CH_4$-oxidation process was supported by the decrease in the ${\delta}^{13}C$ of headspace $CO_2$ during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric $CH_4$ over tidal flats.

Hydrologically Route-based Green Infra facilities assessment Model: Focus on Bio-retention cells, Infiltration trenches, Porous Pavement System, and Vegetative Swales (수문학적 추적 기반의 GI 시설 평가 모델: 생태저류지, 침투도랑, 투수성포장, 식생수로를 대상으로)

  • Won, Jeongeun;Seo, Jiyu;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.74-84
    • /
    • 2021
  • Active stormwater management is essential to minimize the impact of urban development and improve the hydrological cycle system. In recent years, the Low Impact Development (LID) technique for urban stormwater management is attracting attention as a reasonable alternative. The Storm Water Management Model (SWMM) is actively used in urban hydrological cycle improvement projects as it provides simulation functions for various GI (Green Infra) facilities through its LID module. However, in order to simulate GI facilities using SWMM, there are many difficulties in setting up complex watersheds and deploying GI facilities. In this study, a model that can evaluate the performance of GI facilities is proposed while implementing the core hydrological process of GI facilities. Since the proposed model operates based on hydrological routing, it can not only reflect the infiltration, storage, and evapotranspiration of GI facilities, but also quantitatively evaluate the effect of improving urban hydrological cycle by GI facilities. The applicability of the proposed model was verified by comparing the results of the proposed model with the results of SWMM. In addition, a discussion of errors occurring in the SWMM's permeable pavement system simulation is included.

Monitoring Vegetation Structure Changes in Urban Wetlands (도시 내 습지의 식생구조 변화 모니터링)

  • Kim, Na-Yeong;Nam, Jong-Min;Lee, Gyeong-Yeon;Lee, Kun-Ho;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.135-154
    • /
    • 2023
  • Urban wetlands provide various ecosystem services and are subject to restoration and creation projects due to their increased value in the context of climate change. However, the vegetation structure of wetlands is sensitive to environmental changes, including artificial disturbances, and requires continuous maintenance. In this study, we conducted a vegetation survey of three wetlands created as part of a project to restore urban degraded natural ecosystems and monitored the quantitative changes in wetland vegetation structure using an unmanned aerial vehicle. The vegetation survey revealed 73 species in Incheon Yeonhui wetland, and the change in vegetation composition based on wetland occurrence frequency was 11.5% on average compared to the 2018 vegetation survey results. The vegetation survey identified 44 species in Busan Igidae wetland, and the proportion of species classified as obligate upland plants was the highest at 48.8% among all plants, while the proportion of naturalized plants accounted for 15.9% of all plants. The open water surface area decreased from 10% in May 2019 to 6.7% in May 2020. Iksan Sorasan wetland was surveyed and 44 species were confirmed, and it was found that the proportion of facultative wetland plant decreased compared to the 2018 vegetation survey results, and the open water surface area increased from 0.4% in May 2019 to 4.1% in May 2020. The results of this study showed that wetlands with low artificial management intensity exhibited a tendency for stabilization of vegetation structure, with a decrease in the proportion of plants with high wetland occurrence frequency and a relatively small number of new species. Wetlands with high artificial management intensity required specific management, as they had a large change in vegetation structure and a partially high possibility of new invasion. We reaffirmed the importance of continuous monitoring of vegetation communities and infrastructure for wetlands considering the function and use of urban wetlands, and restoration stages. These research results suggest the need to establish a sustainable wetland maintenance system through the establishment of long-term maintenance goals and monitoring methods that consider the environmental conditions and vegetation composition of wetlands.

Plant Community Structure of Muju Resort Golf Course in T$\v{o}$kyusan National Park (덕유산 국립공원내 무주리조트 골프장예정지 식물군집구조)

  • Lee, Kyong-Jae;Cho, Woo;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.7 no.2
    • /
    • pp.118-134
    • /
    • 1994
  • This study was conducted to investigated the plant community structure and to revaluate the part of plant ecosystem on statement of environmental impact assessment in Muju resort golf course, Solch'on area, Tokyusan National Park. The actual vegetation was comprised of Pinus densiflora-Quercus mongolica-Q. serrata community(33.21%), Q. spp. community(27.30%), P. densiflora community(20.68%) and high mountain marsh(4.93%) etc., which communities were the major vegetation and the forest vegetation was came to being a peculiar to environmental condition. The degree of green naturality 8, 9 was covered 93% in survey area, and so this result reflect the stability of ecosystem. There was all the difference between the statement of environmental impact assessment of development concerned and this study result in the estimation of degree of green naturality. The plant community were divided into six groups in fifty-four plots by DCA and the dividing groups were P. densiflora, P. densiflora-Q. mongolica, P. densiflora-Q. serrata-F. mandschurica-B. davurica, Q. mongolica-Q. serrata-P. densiflora, Q. mongolica-Q. variabilis, Salix koreansis- B. davurica community. Except P. densiflora forest in survey site, the ecological succession trend of the other communities was seemed to be from P. densiflora to Q. spp.

  • PDF