DOI QR코드

DOI QR Code

Monitoring Vegetation Structure Changes in Urban Wetlands

도시 내 습지의 식생구조 변화 모니터링

  • Kim, Na-Yeong (National Institute of Ecology, Research Center for Endangered Species) ;
  • Nam, Jong-Min (National Institute of Ecology, Research Center for Wetland) ;
  • Lee, Gyeong-Yeon (National Institute of Ecology, Research Center for Endangered Species) ;
  • Lee, Kun-Ho ;
  • Song, Young-Keun (Dept. of Environmental Design, Graduate School of Environmental Studies, Seoul National University)
  • 김나영 (국립생태원 멸종위기종복원센터) ;
  • 남종민 (국립생태원 습지센터) ;
  • 이경연 (국립생태원 멸종위기종복원센터) ;
  • 이근호 ((주)국토환경엔지니어링) ;
  • 송영근 (서울대학교 환경대학원 환경설계학과)
  • Received : 2023.11.20
  • Accepted : 2023.12.04
  • Published : 2023.12.30

Abstract

Urban wetlands provide various ecosystem services and are subject to restoration and creation projects due to their increased value in the context of climate change. However, the vegetation structure of wetlands is sensitive to environmental changes, including artificial disturbances, and requires continuous maintenance. In this study, we conducted a vegetation survey of three wetlands created as part of a project to restore urban degraded natural ecosystems and monitored the quantitative changes in wetland vegetation structure using an unmanned aerial vehicle. The vegetation survey revealed 73 species in Incheon Yeonhui wetland, and the change in vegetation composition based on wetland occurrence frequency was 11.5% on average compared to the 2018 vegetation survey results. The vegetation survey identified 44 species in Busan Igidae wetland, and the proportion of species classified as obligate upland plants was the highest at 48.8% among all plants, while the proportion of naturalized plants accounted for 15.9% of all plants. The open water surface area decreased from 10% in May 2019 to 6.7% in May 2020. Iksan Sorasan wetland was surveyed and 44 species were confirmed, and it was found that the proportion of facultative wetland plant decreased compared to the 2018 vegetation survey results, and the open water surface area increased from 0.4% in May 2019 to 4.1% in May 2020. The results of this study showed that wetlands with low artificial management intensity exhibited a tendency for stabilization of vegetation structure, with a decrease in the proportion of plants with high wetland occurrence frequency and a relatively small number of new species. Wetlands with high artificial management intensity required specific management, as they had a large change in vegetation structure and a partially high possibility of new invasion. We reaffirmed the importance of continuous monitoring of vegetation communities and infrastructure for wetlands considering the function and use of urban wetlands, and restoration stages. These research results suggest the need to establish a sustainable wetland maintenance system through the establishment of long-term maintenance goals and monitoring methods that consider the environmental conditions and vegetation composition of wetlands.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 습지생태계 가치평가 및 탄소흡수 가치증진 사업의 지원을 받아 수행되었음 (2022003630004).

References

  1. Ahn KH, Lim JC, Lee YK, Choi TB, Lee KS, Im NS, Go YH, Suh JH, Shin YK, & Kim MJ. 2016. Vegetation Classification and Distributional Pattern in Damyang Riverine Wetland. Journal of Environmental Impact Assessment, 25(2), 89-102.
  2. Alikhani, S., Nummi, P., & Ojala, A. 2023. Modified, Ecologically Destructed, and Disappeared - History of Urban Wetlands in Helsinki Metropolitan Area. Wetlands 43, 33. https://doi.org/10.1007/s13157-023-01671-w
  3. Bae SH & Lee SD. 2018. Construction and Management Plan of Constructed Wetland for Promoting Biodiversity, Journal of People, Plants, and Environment 2018;21(3):185-202., https://doi.org/10.11628/ksppe.2018.21.3.185
  4. Bai Jh., Cui, Baoshan., Cao, Huicong., Li, Ainong., & Zhang, Baiyu. 2013. Wetland Degradation and Ecological Restoration. The Scientific World Journal. 2013. 523-632. https://doi.org/10.1155/2013/523632.
  5. Bressler, D. W., & Paul, M. J. 2005. Effects of eutrophication on wetland ecosystems. Unpubl. report, Tetra Tech, Inc.(online) http://nsteps.tetratech-ffx.com/PDF&otherFiles/literature_review/Eutrophication%20effects%20on%20wetlands.pdf (December 10 2010).
  6. Brinkmann, K., Hoffmann, E., & Buerkert, A. 2020. Spatial and Temporal Dynamics of Urban Wetlands in an Indian Megacity over the Past 50 Years. Remote Sensing, 12(4), 662.
  7. Choung YS, Lee WT, Cho KH, Joo KY, Min BM , Hyun JO, & Lee KS. 2012. Categorizing Vascular Plant Species Occurring in Wetland Ecosystems of the Korean Peninsula. Center for Aquatic Ecosystem Restoration, Chuncheon. 243pp.
  8. Chun SH. 2008. Distributional Patterns and the Evaluation of Hydrophytic Plants of Urban Wetlands in Seongnam City, Gyunggi-do Province, Korea. Korean Journal of Environment and Ecology, 22(2), 159-172.
  9. Comer, P.J. D. Faber-Langendoen, S. Menard, R. O'Connor, P. Higman, Y.M. Lee, & B. Klatt. 2017. User Guide for Wetland Assessment and Monitoring in Natural Resource Damage Assessment and Restoration. Prepared for DOI Natural Resource Damage Assessment and Restoration Program. NatureServe, Arlington VA.
  10. Dressing, S.A., D.W. Meals, J.B. Harcum, J. Spooner, J.B. Stribling, R.P. Richards, C.J. Millard, S.A. Lanberg, & J.G. O'Donnell. 2016. Monitoring and Evaluating Nonpoint Source Watershed Projects. United States Environmental Protection Agency Office of Water
  11. Fan, Hongxiang., Xu, Ligang., Wang, Xiaolong., Jiang, Jiahu., Feng, Wenjuan., & You, Hailin. 2019. Relationship Between Vegetation Community Distribution Patterns and Environmental Factors in Typical Wetlands of Poyang Lake, China. Wetlands (Wilmington, N.C.), 39(S1), 75-87.
  12. France, R.L. 2003. Wetland Design: Principles and Practices for Landscape Architects and Land-Use Planners. W.W. Norton, New York.
  13. Geist, C., & Galatowitsch, S. M. 1999. Reciprocal Model for Meeting Ecological and Human Needs in Restoration Projects. Conservation Biology, 13(5), 970-979.
  14. Ghosh, Sasanka. & Das, Arijit. 2019. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sensing Applications, 13, 191-203. https://doi.org/10.1016/j.rsase.2018.10.014
  15. Guh JO, Lee DJ, Kuk YI, & Chon SW. 2009. Water and ruderal plant flora of Korea. Seoul: Haksuljungbocenter.
  16. Guo, Meng., Li, Jing., Sheng, C.L., Xu, Jiawei., & Wu, Li. 2017. A Review of Wetland Remote Sensing. Sensors. 17. 777. https://doi.org/ 10.3390/s17040777.
  17. Ho, Mengchi., & Richardson, Curtis J. 2013. A five year study of floristic succession in a restored urban wetland. Ecological Engineering, 61, 511-518.
  18. Hong JP, Kim HS, Sim YJ, Eo YJ, Lee KS, Lim JH, Kim MH, Kim SJ, Kim HY, & Jo KY. 2018. Research on the establishment of guidelines for urban ecological restoration projects. Ministry of Environment, Korea Association of ecological restoration.
  19. Jang JH. 2013. Method of Restoration and Management for Biodiversity Improvement of Urban Wetlands in Seoul. PhD dissertation. Department of Landscape Architecture Graduate School, University of Seoul. Seoul, South Korea
  20. Jill A. Hapner. 2006. Development of Methods to Assess and Monitor Small Wetlands Restored on Private Lands. Final Report to U.S. EPA - Region V Wetland Program Grant # CD96509801-0
  21. Kang MJ, Kim CS, & Oh KH. 2007. Flora, Actual Vegetation Map, and Primary Production of the Vascular Hydrophytes and Hygrophytes in the Upo Wetland. Journal of Wetlands Research, 9(2), 44-.55.
  22. Kim CH, & Myuong H. 2008. A 4-year Follow-up Survey of Flora at the Human-made Wetlands Along Boknaecheon of Juam Lake.Korean Env. Res & Revg. Tech, 11(5), 25-37.
  23. Kim NY, Song YK, & Lee KH. 2018. Change in the Wetland Vegetation Structure after the Ecological Restoration. Journal of the Korea Society of Environmental Restoration Technology, 21(6), 95-113.
  24. Korea National Arboretum. 2023. Checklist of Vascular Plants in Korea. Korea National Arboretum. Retrieved Mar. 22 2023 available from http://www.nature.go.kr/kpni/index.do..
  25. Lee CB. 2003. Coloured flora of Korea. Seoul: Hyangmunsa
  26. Lee IW, & KIM KD. 2021. A Study on the Ecological Characteristics and Management of Vegetation in Gudam Wetland. Journal of Wetlands Research, 23(2), 133-143.
  27. Lee KJ, Lee SD, & Kwon JO. 2003. The Analysis of the Ecological Characteristics of the Major Wetland Types in Seoul. Korean Journal of Environment and Ecology, 17(1), 44-55.
  28. Lee ST. 1997. 韓國植物檢索集 / Seoul:Academybooks
  29. Li, Yangfan., Shi, Yalou., Qureshi, Salman., Bruns, Antje., & Zhu, Xiaodong. 2014. Applying the concept of spatial resilience to socioecological systems in the urban wetland interface. Ecological Indicators, 42, 135-146. https://doi.org/10.1016/j.ecolind.2013.09.032
  30. Lishawa, S. C., Lawrence, B. A., Albert, D. A., Larkin, D. J., & Tuchman, N. C. 2019. Invasive species removal increases species and phylogenetic diversity of wetland plant communities. Ecology and Evolution, 9(11), 6231-6244. https://doi.org/10.1002/ece3.5188
  31. McCoy-Sulentic, M. E., Kolb, T. E., Merritt, D. M., Palmquist, E. C., Ralston, B. E., & Sarr, D. A. 2017. Variation in species-level plant functional traits over wetland indicator status categories. Ecology and evolution, 7(11), 3732-3744. https://doi.org/10.1002/ece3.2975
  32. Ministry of Environment. 2007a. Ecological risk assessment and management of invasive vines for biodiversity and ecological functions in riverine wetland. [online] Available at: <https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO200800000313>
  33. Ministry of Environment. 2007b. Master Plan for Wetland Conservation
  34. Ministry of Environment. 2019. A treasure trove of biodiversity, wetlands are disappearing. [online] Available at: <https://www.me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=933440&menuId=286>
  35. Ministry of Environment. 2020. Wetland Protected Area and Ramsar Wetland Status. [online] Available at: <http://www.me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10259&orgCd=&condition.deleteYn=N&seq=7479>
  36. Moor, Helen., Rydin, Hakan., Hylander, Kristoffer., Nilsson, Mats B., Lindborg, Regina., & Norberg, Jon. 2017. Towards a trait-based ecology of wetland vegetation. The Journal of Ecology, 105(6), 1623-1635.
  37. Neoscape laboratory. 2021. Establishment of space restructuring plan for Tancheon Taepyeong Wetland Ecological Garden where nature and people coexist. Seongnam city
  38. Nishimoto, Takashi., Nishimoto, Takashi., Hada, Yoshio., & Hada, Yoshio. 2013. Twelve years of vegetation change in an artificial marsh after the transfer of plants and hydrological restoration. Landscape and Ecological Engineering, 9(1), 131-142.
  39. Pande-Chhetri, R., Abd-Elrahman, A., Liu, T., Morton, J., & Wilhelm, V. L. 2017. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. European Journal of Remote Sensing, 50(1), 564-576.
  40. Park MO, Kwon HJ, Koo BH, Kim HG, Li L, & Choi IK. 2013. Inventory Development according to Aquatic Environment Fitness and Classification Characteristics of Plants for Urban Water Space. Journal of the Korea Society of Environmental Restoration Technology, 16(2), 93-104.
  41. Paul, s. Ed. 2013. Workbook for managing urban wetlands in Australia. 1st edn(Sydney Olympic Park Authority). eBook available through www.sopa.nsw.gov.au/education/WETeBook/, ISBN 978-0-9874929-0-4
  42. Shiferaw, W., Demissew, S., & Bekele, T. 2018. Ecology of soil seed banks: Implications for conservation and restoration of natural vegetation: A review. International Journal of Biodiversity and Conservation, 10(10), 380-393. https://doi.org/10.5897/IJBC2018.1226
  43. Simpson, G., & Newsome, D. 2017. Environmental history of an urban wetland: from degraded colonial resource to nature conservation area. Geo: Geography and Environment 4(1):e00,030.
  44. Son DJ, Lee HH, Lee EJ, Cho KH, & Kwon DM. 2015. Flora and Vegetation Structure in a 15-Year-Old Artificial Wetland. Ecology and Resilient Infrastructure, 2(1), 54-63. https://doi.org/10.17820/ERI.2015.2.1.054
  45. Sremacki, M., Obrovski, B., Petrovic, M., Mihajlovic, I., Dragicevic, P., Radic, J., & Miloradov, M. V. 2020. Comprehensive environmental monitoring and assessment of protected wetland and lake water quality in Croatia and Serbia. Environmental Monitoring and Assessment, 192(3), 1-11.
  46. Taddeo, Sophie. 2013. Remote Sensing Tools for the Large-Scale Monitoring of Vegetation Dynamics in Wetland Ecosystems. University of California, Berkeley.
  47. Tuttle, K.N. 2013. Continued monitoring of the constructed wetland at Diversion Reservoir, Jordon River Watershed, Southern Vancouver Island. LGL Report EA3285. Unpublished report by LGL Limited environmental research associates, Sidney, B.C., for BC Hydro, Fish and Wildlife Compensation Program (Coastal), B.C. 38 pp. + Appendices
  48. Wanek, A. S., Hargiss, C. L., & Norland, J. 2022. Hydric vegetation communities across rural, peri-urban, and urban zones within the Prairie Pothole Region, Urban Forestry & Urban Greening, Volume 70, 2022, 127539, ISSN 1618-8667, https://doi.org/10.1016/j.ufug.2022.127539.
  49. Yang, Zhaohui., Bai, Junwu., & Zhang, Weiwei. 2021. Mapping and assessment of wetland conditions by using remote sensing images and POI data. Ecological Indicators, 127, Ecological indicators, 2021-08, Vol.127.