Derivation of Sustainability Factors of LID Facility and Strategy of Citizen Participation for Management

LID 시설의 지속가능성 관리인자 도출 및 시민참여 관리방안

  • Kim, Youngman (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Kim, Lee-hyung (Department of Civil and Environmental Engineering, Kongju National University)
  • 김영만 (공주대학교 건설환경공학과) ;
  • 김이형 (공주대학교 건설환경공학과)
  • Received : 2019.01.21
  • Accepted : 2019.02.13
  • Published : 2019.02.28


LID(Low Impact Development) facility classified as a social infrastructure can maintain landscape sustainability and functional sustainability through continuous maintenance and management. Since LID is a natural-based solution, the sustainability can be secured through the management of weeds, wastes and vegetation. The LID facility is distributed in the city and is an infrastructure that can be managed through citizen participation because of simple maintenance. Therefore, this study was conducted to investigate the maintenance factors affecting the sustainability of the LID facilities and to suggest measures for maintenance by investigating the participation of the peoples. The factors for landscape sustainability were derived to waste and weed management. Also the factors for functional sustainability were assessed to identification and management of dead bodies and selection of applicable soil and plant species. The citizens showed high agreement of more than 80% in the questionnaires on expanding and managing LID facilities, enacting LID ordinances, and participating in the national movement. The intention to participate in LID management linked to jobs was about 64%, indicating that LID could become a job for the vulnerable. Maintenance of the LID can easily be carried out by non-specialists, which can lead to citizen participation with low cost for each facility. The maintenance cost for citizen participation can be allocated from the social infrastructure management cost reduced by LID application of the local government and the social welfare budget of the central government.

사회인프라 시설로 분류되는 LID(Low Impact Development) 시설은 지속적 유지 및 관리를 통하여 경관지속성과 기능지속성을 유지할 수 있다. LID 기법은 자연기반해법이기에 잡초, 폐기물 및 식생관리를 통하여 지속가능성을 확보할 수 있다. LID 시설은 도시에 분산적으로 설치되며 유지관리가 단순하기에 시민들의 참여를 통한 관리가 가능하다. 따라서 본 연구는 LID 시설의 현장조사를 통하여 LID 시설의 지속가능성에 영향을 주는 유지관리 인자를 도출하고 시민들의 참여도를 조사함으로써 유지관리에 대한 방안을 제시하고자 수행되었다. LID 시설의 경관지속성은 폐기물, 잡초관리가 중요한 인자로 도출되었으며, 기능지속성은 고사체 원인규명 및 관리와 적용토양과 식물종 선정이 중요한 인자로 도출되었다. 시민들은 LID 시설의 확대 및 관리, 조례제정 및 범국민 운동 참여 등에 대한 설문조사에서 모두 80% 이상의 높은 동의를 보였다. 일자리와 연계된 LID 관리 참여의향은 약 64%로 나타나 LID가 취약계층의 일자리가 될 수 있는 가능성을 보였다. LID의 유지관리는 비전문가도 쉽게 수행할 수 있기에 시설별 적은 비용으로 시민들의 참여를 유도할 수 있다. 시민들이 참여하는 유지관리 비용은 지자체의 LID 적용을 통해 저감된 사회인프라 관리비용과 정부의 사회복지 예산을 적용할 수 있을 것이다.


HKSJBV_2019_v21n1_57_f0001.png 이미지

Fig. 1. Weeds and solid wastes in LID facility

HKSJBV_2019_v21n1_57_f0002.png 이미지

Fig. 2. Plant mortality rate of tree box filter and dead plants

HKSJBV_2019_v21n1_57_f0003.png 이미지

Fig. 3. Suggestion of improvement of LID facilities

HKSJBV_2019_v21n1_57_f0004.png 이미지

Fig. 4. Citizens's willingness for maintenances and expansion of LID facilities

HKSJBV_2019_v21n1_57_f0005.png 이미지

Fig. 5. Environmental problems of conventional infrastructure

Table 1. LID facilities for site investigation

HKSJBV_2019_v21n1_57_t0001.png 이미지

Table 2. Purposes and questions of survey

HKSJBV_2019_v21n1_57_t0002.png 이미지

Table 3. Comparison of conventional and LID green infrastructures

HKSJBV_2019_v21n1_57_t0003.png 이미지


  1. Alihan, J., Flores, PE., Geronimo, FK., and Kim, LH. (2018). Evaluation of a small HSSF constructed wetland in treating parking lot stormwater runoff using SWMM, Desalination and Water Treatment, 101, pp.123-129. DOI: 10.5004/dwt.2018.21823.
  2. Brown, J. N. and Peake, B. M. (2006). Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff, Science of the Total Environment, 359(1), pp. 145-155. DOI: 10.1016/j.scitotenv.2005.05.016.
  3. Choi, H., Hong and Kim, LH. (2018a). Assessment of salt resistance and performances of LID applicable plants, Desalination and Water Treatment, 101, pp.116-122. DOI: 10.5004/dwt.2018.21821.
  4. Choi, H., Hong, J., Geronimo, GK, and Kim, LH. (2018b). Implications of CaCl2 application to plants in LID facilities, Water Science & Technology, 78(5), pp. 1045-1053. DIOI:
  5. Choi, J., Hong, J., Kang, H., and Kim, LH. (2016). Characteristics of stormwter runoff from highways with unit traffic volume, J. of Wetlands Research, 18(3), pp. 275-281. [Korean literature] DOI:
  6. Choi, J., Maniquiz-Redillas, MC., Hong, H., and Kim, LH. (2018). Selection of cost-effective Green Stormwater Infrastructure (GSI) Applicable in Highly Impervious Urban Catchments, KSCE J. of Civil Engineering, 22(1), pp.24-30.
  7. FHA (Federal Highway Administration) (1996). Evaluation and management of highway runoff water quality, In: Report No. FHWA-PD-96-032, U.S. Department of Transportation, USA.
  8. Flores, PED., Maniquiz-Redillas, MC., Geronimo, FK, Alihan, JC., and Kim, LH. (2016). Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system, J. of Wetlands Research, 18(4), pp. 481-487. DOI:
  9. Geronimo, FKF., Maniquiz-Redillas, MC., Tobio, JS., and Kim, LH. (2014). Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter, Water Science and Technology, 69(12), pp. 2460-2467. DOI: 10.2166/wst. 2014.150.
  10. Gurung, SB., Geronimo, FK., Hong, J., Kim, LH. (2018). Application of indices to evaluate LID facilities for sediment and heavy metal removal, Chemosphere, 206, pp. 693-700. DOI:
  11. Hong, J., Felix,M., Son,, Y., and Kim, LH. (2015). Comparison of physico-chemical characteristics of sediments from different land use types, Desalination and Water Treatment. 54(13), pp. 3704-3711. DOI:
  12. Hong, J., Geronimo, FK., Choi, H., and Kim, LH. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens, Chemosphere, 209, pp. 20-27. DOI:
  13. Hong, J., Maniquiz-Redillas, MC., Choi, J., Kim, LH. (2017). Assessment of bioretention pilot-scale systems for urban stormwater management, Desalination and Water Treatment, 63, pp. 412-417. DOI: 10.5004/dwt.2017.11444.
  14. Jeon, J., Jung, J., Kim, Y., and Kim, LH (2018). A Review of Research Trend Related to NPS and Suggestion for Research Direction in the Future, J. of Wetlands Research, 20(1), pp. 80-93. [Korean literature] DOI:
  15. Kim, H, Jung, M., Mallari, KJ., Pak, G., Kim, S., Kim, S., Kim, LH., and Yoon, J. (2015). Assessment of porous pavement effectiveness on runoff reduction under climate change scenarios, Desalination and Water Treatment. 53(11), pp. 3142-3147. DOI:
  16. Kim, LH. (2003). Determination of event mean concentrations and first flush criteria in urban runoff, Environmental Engineering Research, 8(4), pp. 163-176. DOI: 10.4491/eer.2003.8.4.163.
  17. KMA(Korea Meteorological Administration) (2018). Wether Information,
  18. KOSIS(Korea Statistical Inforamation Service) (2018).
  19. Maniquiz, MC., Choi, J, Lee, S, Cho, H, and Kim, LH. (2010). Appropriate methods in determining the event mean concentration and pollutant removal efficiency of a best management practice, Environmental Engineering Research, 15(4), pp. 215-223. DOI: 10.4491/eer.2010.15.4.215.
  20. MLIT(Ministry of Land, Infrastructure, and Transport) (2014). Guidelines for the Preparation of Water-friendly Zones. [Korean Literature]
  21. MOE(Ministry of Environment) (2013). The Study on the Investigation and Improvement Plan of Impermeable Area in Korea. [Korean Literature]
  22. MOE(Ministry of Environment) (2016). Manual for Installation and Management of Nonpoint Pollution Abatement Facilities. [Korean Literature]
  23. Whitford, V., Ennos, AR., and Handley, JF. (2001). City from and natural process-indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape and Urban Planning, 57(2), pp. 91-103. DOI: 10.1016/S0169-2046(01)00192-X.