• Title/Summary/Keyword: 습도 변화

Search Result 1,142, Processing Time 0.026 seconds

Evaluation of Temperature and Humidity of a Thermo-Hygrostat of PET/CT Equipment using a Temperature and Humidity Sensor(BME 280) (온·습도센서(BME 280 센서)를 이용한 PET/CT 장비의 항온 항습기 온·습도 평가)

  • Ryu, Chan-Ju;Kim, Jeong-A;Kim, Jun-Su;Yun, Geun-Yeong;Heo, Seung-Hui;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • PET(Positron Emission Tomography) devices are used as PET/CT or PET/MRI devices fused with the devices of CT or MRI for obtaining anatomical information. Therefore, the devices are constructed in circular ring-type structure whose length of gantry(the main part of filming) becomes wider and the interior depth becomes longer in comparison to other common medical equipments. scintillator, one of the components in PET devices, is inside the gantry, and as it is consisted of crystal which is sensitive to the change of temperature and humidity, large temperature change can cause the scintillator to be damaged. Though scintillator located inside the gantry maintains temperature and humidity with a thermo-hygrostat, changes in temperature and humidity are expected due to structural reasons. The output value was measured by dividing the inside of the gantry of the PET/CT device into six zones, each of which an Adafruit BME 280 temperature and humidity sensor was placed at. A thermo-hygrostat keeps the temperature and humidity constant in the PET/CT room. As the measured value of temperature and humidity of the sensor was obtained, the measured value of temperature and humidity appeared in the thermohygrostat was taken at the same time. Comparing the average measured values of temperature and humidity measured at each six zones with the average values of the thermo-hygrostat results in a difference of 2.71℃ in temperature and 21.5% in humidity. The measured temperature and humidity of PET Gantry is out of domestic quality control range. According to the results of the study, if there is continuous change in temperature and humidity in the future, the aging of the scintillator mounted in the PET Gantry is expected to be aging, so it is necessary to find a way to properly maintain the temperature and humidity inside the Gantry structure.

Changes in Temperature and Humidity in the Forest Caused by Development (도로에 의한 산림 내 온습도 변화)

  • Choi, Jaeyong;Park, Myung-Soo;Kim, Su-Kyung;Yu, Seung-Hyeon;Choi, Won-Tae;Song, Wonkyong;Kim, Whee-Moon;Kim, Seoung-Yeal;Lee, Ji-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.604-617
    • /
    • 2018
  • As the depletion of forests became more widespread due to the increase in the number of roads, the research was conducted on the relationship between temperature and humidity in the forests, assuming that the forests around the roads were affected. Through the forest monitoring, the temperature and humidity of coniferous forests and broadleaf forests in Sedong and Gongju areas were observed at three point of 10m, 20m and 30m from the road boundary to the inside of the forest, respectively. In Yeongdong area, for more reliable results, it was observed from the point of 0m, 10m, and 20m. During the study period, so it was expected the change in tree growth was small, the change of temperature and humidity inside the forest by the road was compared with the temperature and humidity from the road to the inside of the forest from September 2017 to January 2018, the changes of temperature and humidity inside the forest due to linear development such as roads were quantitatively analyzed. Using the HOBO data logger (MX2301, Onset Corp.), the temperature and humidity changes of each site were measured, and the average of the changes have been analyzed monthly. In the case of Gongju coniferous forests in September 2017, the average weekly temperature is $0.57^{\circ}C$ higher than the forest outside from the forest boundary and $1.23^{\circ}C$ higher than the inside of the forest, at night in November 2017, in Sedong broadleaf forests. That is, the ability to control the temperature and humidity of the forests along the road was larger and less variable as the distance from the road boundary to the inside of the forest increased. In this study, it is considered that the high degree of change in temperature and humidity of the forest and the surrounding area due to artificial linear development such as roads will affect the growth of trees. This results could serve as a basis for studying the quantitative scope of linear development affecting forest growth and for managing forest change caused by linear development.

Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture (광물질 혼화재를 함유한 고성능 콘크리트의 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Yong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.19-31
    • /
    • 2007
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

Effect of Humidity on the Storage Life of Satsuma Mandarin (저장습도가 온주밀감의 저장에 미치는 영향)

  • Lee, Sang-Yang;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.223-228
    • /
    • 1999
  • The storage effects of satsuma mandarin(Citrus unshiu Marc. var. miyagawa) by humidity control during storage; 90% relative humidity (RH) and 85% RH at $3^{circ}C$, and room temperature were investigated. After 98 days' storage, weight losses were 3.40% for 90% RH, 6.92% for 85% RH, and 11.87% for room temperature storage. Decay ratio was increased rapidly from 3.87% on 98 days' to 48.75% on 126 days' storage for 90% RH. Soluble solids and flesh ratio were declined gradually, but the differences were not significantly. Firmness of fruits was continuously reduced during storage, especially on room temperature storage by the softening of the fruits. Acid content and vitamin C were gradually reduced during storage. Coloration was continuously progressed on room temperature, compared to cold storage. In order to keep freshness of the fruits, optimum storage period of early variety of Satuma mandarin was regarded for 100 days at $3^{circ}C$, 85% RH on the basis of sensory evaluation and chemical compositions.

  • PDF

The fabrication of $TiO_2-V_2O_5$ ceramic humidity sensors and their characteristics ($TiO_2-V_2O_5$ 세라믹 습도감지소자의 제조 및 그 특성)

  • 이성필;임재영;고성택
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 1993
  • 습도 감지소자의 물질 중 이온형의 대표적인 물질인 TiO$_{2}$ 습도 센서와 TiO$_{2}$에 V$_{2}$O$_{5}$를 첨가한 TiO$_{2}$-V$_{2}$O$_{5}$ 세라믹 습도센서를 제작하고 V$_{2}$O$_{5}$함량의 변화, 열처리 온도 및 열처리 시간에 따른 습도감지 특성 및 동작온도에 따른 특성 등을 조사하였으며 XRD와 SEM으로 그 원인을 규명하였다. TiO$_{2}$에 V$_{2}$O$_{5}$를 첨가하면 선형성이 좋아지는 것을 알 수 있었고 제작한 시료 중 V$_{2}$O$_{5}$의 함량이 1mol% 열처리 조건이 1000.deg.C, 1시간인 소자는 동작온도 40.deg.C에서 약 95%의 감도를 나타내었다.

  • PDF

Humidity Effects on Electric Property in ${\gamma}$-Ray Irradiated PE and PP (방사선이 조사된 PE와 PP의 전기적 특성에 미치는 습도효과)

  • Kang, J.H.;Kim, H.J.;Yu, K.M.;Han, S.O.;Kim, J.S.;Park, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1458-1459
    • /
    • 2002
  • PE(Polyethylene)와 PP(Polypropylene)의 sheet 에 $Co^{60}{\gamma}$-ray 선원을 실온, 대기 중에서 10 kGy, 30 kGy, 50 kGy의 방사선량으로 조사시키고 습도 분포에 따른 표면 및 체적 저항을 측정한 결과 방사선이 조사되지 않은 시료와 방사선이 조사된 시료와의 저항 값은 큰 차이를 보이지 않았으나 습도 효과에 따른 변화는 습도 분포가 높을수록 저항 값은 상대적으로 낮게 나타났다.

  • PDF

A Study on Electrification Properties of Electrostatics in Silicone Rubber (실리콘 고무의 정전기 대전특성에 관한연구)

  • Lee, Sung-Ill;Kim, Hee-Dae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.107-107
    • /
    • 2010
  • IT 산업의 발달과 더불어 카메라, 휴대폰, 노트북, 캠코더 등 전기전자 응용분야에 복합기능성 실리콘 고무 시트가 사용되고 있다. 본 연구에서는 실리콘 고무의 사용시 발생하는 정전기를 방지하기 위해 습도와 온도 변화에 따른 정전기 대전전압을 측정하였다. 카본양의 증가에 따라서 대전전압이 감소하였으며 습도가 증가됨에 따라 정전기 대전량은 감소하였다. 12Phr카본 첨가시 대전과 동시에 완화가 일어남을 확인했다.

  • PDF

Effect of Scindapsus aureus and Syngonium podophyllum on the Improvement in Indoor Humidity by a Difference of Hydoroculture Volume Ratio and Pot Media (하이드로컬쳐 부피비와 화분용토에 따른 스킨답서스, 싱고늄의 실내습도 개선효과)

  • Ju, Jin-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.94-99
    • /
    • 2009
  • The purpose of this study was to utilize hydroculture by the vital means of the improvement of indoor relative humidity. This experiment employed a search of the effect of Scindapsus aureus and Syngonium podophyllum that are generalized for hydroculture foliage plant by a difference of volume ratio, pot media and plants species. In the case of Scindapsus aureus, relative humidity was high for growth chamber in which plants presented as opposed to control growth chambers in which there were no plants. Although relative humidity was 25% in control chamber, there was an increase of 40% at a 2% volume ratio, 45% at a 3% volume ratio and 50% at a 5% volume ratio. The relative humidity of Syngonium podophyllum was 40% at a 2% volume ratio, 44% at a 3% volume ratio and 46% at a 5% volume ratio, while the control treatment was 25% relative humidity in hydroculture. Both the control treatment and hydroball pot in a hydroball container were high at first. As time progressed, artificial soil pots in water containers was similar when housed within the control chamber by about 45% relative humidity. Hydroball pots in water container had about 30% relative humidity. Ardisia pusilla of hydroball poIt in hydroball container had about 38% relative humidity.

Experimental Investigation on Variation of Internal Relative Humidity and Temperature due to Hydration of Concrete at Early Age (내부 온습도 측정을 통한 초기재령의 콘크리트 내부 습도 및 수화열 변화 특성 분석)

  • Hong, Sung-Ki;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.741-744
    • /
    • 2008
  • Quality control of early age concrete significantly influences the long term performance. Primary factors for early age concrete quality control should include the relative humidity and temperature variation, and these are more important as structures become massive and huge. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF