• Title/Summary/Keyword: 슬립속도

Search Result 80, Processing Time 0.028 seconds

Nonlinear analysis of a 4-dof friction induced self-ocsillation system with the friction coefficient of velocity and pressure (속도와 압력의 항의 마찰상수를 갖는 마찰기인 4자유도계 자려진동 시스템의 비선형 해석)

  • Joe, Yong-Goo;Shin, Ki-Hong;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.331.1-331
    • /
    • 2002
  • Four degrees of freedom mathematical model is presented to describe the fundamental mechanisms of the disc brake squeal noise. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The friction coeficient including "relative velocity" and ′normal force" can be generally formulated as the form of multiplication with polynominal parameters(${\beta}$, ${\gamma}$). (omitted)

  • PDF

A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System (능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

IMPLEMENTATION OF VELOCITY SLIP MODELS IN A FINITE ELEMENT NUMERICAL CODE FOR MICROSCALE FLUID SIMULATIONS (속도 슬립모델 적용을 통한 마이크로 유체 시뮬레이션용 FEM 수치 코드 개발)

  • Hoang, A.D.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • The slip effect from the molecular interaction between fluid particles and solid surface atoms plays a key role in microscale fluid transport and heat transfer since the relative importance of surface forces increases as the size of the system decreases to the microscale. There exist two models to describe the slip effect: the Maxwell slip model in which the slip correction is made on the basis of the degree of shear stress near the wall surface and the Langmuir slip model based on a theory of adsorption of gases on solids. In this study, as the first step towards developing a general purpose numerical code of the compressible Navier-Stokes equations for computational simulations of microscale fluid flow and heat transfer, two slip models are implemented into a finite element numerical code of a simplified equation. In addition, a pressure-driven gas flow in a microchannel is investigated by the numerical code in order to validate numerical results.

A Study of Brake Force Detection Characteristics for Field Operation of ISO Brake Tester (ISO 제동시험기 실증운영을 통한 제동력 검출 특성에 관한 연구)

  • KWON, Kenan;GU, Youngjin;BAE, Jinmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.13-24
    • /
    • 2018
  • According to DEKRA (a Germany Certification and Inspection Agency)'s accident rate analysis by vehicle defect factor, as a result of analysis of the causes of accidents by flaws, it was found that braking devices accounted for 41%. Defects in the braking system are closely related to the accident, so it is very important to find faulty brking systems to ensure safety. The EU and USA uses ISO brake tester and the Korea is brake teater is first introduse in Japan for vehicle inspection and maintanance. KOTSA introduce the ISO brake tester in order to promote the advanced standardization of the inspection equipment and inspection tecnology, and examined the detection characteristics and applied it to the improvement direction of the brake tester to secure the driving safety.

Induction Heating of Cylinderical MoSi2-based Susceptor (실린더형 MoSi2계 발열체의 유도가열 적용)

  • Lee, Sung-Chul;Kim, Yo Han;Myung, Jae-ha;Kim, Bae-Yeon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.553-558
    • /
    • 2019
  • In present study, the cylindrical susceptor by the slip casting method was designed to apply high-temperature induction heating by using $(Mo,W)Si_2$ ceramics. $MoSi_2$-based materials were synthesized by SHS (Self-propagating High-temperature Synthesis) method. The phase and crystal structure of $MoSi_2$-based materials were confirmed by XRD analysis. The shape of cylindrical mold was synthesized for various thickness by using the slip casting method. Finally, the susceptor for induction heating was processed by sintering and heat treatment to form $SiO_2$ layer, which was confirmed on the surface of susceptor by SEM/EDS analysis. To evaluate the heating performance of $(Mo,W)Si_2$ cylinder susceptor, we measured the maximum surface temperature and heating rate in comparison with the rod heating element under constantly applied power. The induction heating of the $(Mo,W)Si_2$ cylinder showed excellent heating performance, reaches the maximum temperature of $1457^{\circ}C$, with the average heating rate of $19^{\circ}C/s$ at 2 kW

Speed Control of Permanent Magnet Synchronous Motor for Elevator (엘리베이터구동용 영구자석형 동기전동기의 속도 제어)

  • Won, Chung-Yuen;Yu, Jae-Sung;Kim, Jin-Hong;Jun, Bum-Su;Hwang, Sun-Mo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-82
    • /
    • 2004
  • This paper describes the speed control of the surface-mounted permanent-magent synchronous motors (SMPMSNM) for elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control and Anti-windup technique is adopted to prevent a windup phenomenon. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA(EPF10K10TI144-3) to design compactly and inexpensively. The proposed scheme is verified by the results through digital simulation and experiments for a three-phase 13.3[kW] SMPMSM as a MRL(MachineRoomLess) elevator motor in the laboratory.

Tire Lateral Force Estimation System Using Nonlinear Kalman Filter (비선형 Kalman Filter를 사용한 타이어 횡력 추정 시스템)

  • Lee, Dong-Hun;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2012
  • Tire force is one of important parameters which determine vehicle dynamics. However, it is hard to measure tire force directly through sensors. Not only the sensor is expensive but also installation of sensors on harsh environments is difficult. Therefore, estimation algorithms based on vehicle dynamic models are introduced to estimate the tire forces indirectly. In this paper, an estimation system for estimating lateral force and states is suggested. The state-space equation is constructed based on the 3-DOF bicycle model. Extended Kalman Filter, Unscented Kalman Filter and Ensemble Kalman Filter are used for estimating states on the nonlinear system. Performance of each algorithm is evaluated in terms of RMSE (Root Mean Square Error) and maximum error.

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.

Motor Torque Analysis for Motor-Operated Valves Performance Evaluation (모터구동밸브의 성능 진단을 위한 모터 토크 분석)

  • Kwon, Seok-Jun;Lee, Sang-Hoey;Park, Joo-Moon;Sung, Key-Yong;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.337-341
    • /
    • 2002
  • 본 논문은 원자력 발전소의 안전에 있어 매우 큰 비중을 차지하는 모터 구동밸브(Motor-operated valve : MOV)의 성능진단에 직접 센서를 장착하지 않고 전기신호만을 이용하여 성능진단의 가능성을 보이기 위한 것이다. 모터 토크를 계산하기 위한 두 가지 방법으로서 D-Q frame 변환 방법과 Air-Gap 토크 식을 제시하였고, 계산된 두 토크 값은 정확하게 일치하였다. 부하를 변동하면서 토크미터로 측정된 토크 갑과는 1%의 오차범위 내에서 일치함을 확인했다. 따라서 두 토크 식은 모터구동 밸브의 성능진단을 위한 식으로 사용해도 좋다는 결론을 얻어낼 수 있었다. 계산된 토크를 주파수 분석함으로서 부하의 변동에 따라서 슬립 및 모터속도 주파수가 변화됨을 알 수 있었다. 즉 주파수 분석을 통해 MOV의 모터 및 구동기 부분의 성능 저하 감시에 유용한 단서를 제공해 줄 것이다. 결과적으로, MOV에서 전기신호의 분석은 시스템의 전기 및 기계적인 성능 저하 감시에 이용될 수 있을 것으로 기대된다.

  • PDF