• Title/Summary/Keyword: 슬럼프플로우

Search Result 68, Processing Time 0.028 seconds

New Method for evaluation the Segregation Resistance of High-Fluidity Concrete (고유동 콘크리트의 새로운 재료분리 저항성 평가방법에 관한 제안)

  • 한천구;김기철
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • 고유동 콘크리트의 특성을 판정하기 위한 방법으로서 기존에 알려진 재료분리 판정 방법은 매우 복잡하고 번거로운 실험방법으로 실무 적용에 많은 어려움이 있다. 그런데, 고유동 콘크리트의 유동성 측정 방법에는 슬럼프 플로우를 주로 측정하고, 슬럼프는 변화가 작아서 배제되고 있는 실정이나, 재료분리된 양상을 살펴보면 슬럼프 플로우는 큰 반면, 슬럼프는 작은 양상을 보이고 있다. 따라서 본 연구에서는 고유동 콘크리트의 재료분리 저항성을 슬럼프와 슬럼프 플로우의 조합으로 간단히 평가할 수 있는지 그 가능여부를 검토하고자 하였다. 연구 결과 슬럼프 플로우에 대한 슬럼프의 비는 양호한 재료분리의 평가지표로 이용할 수 있는데, 이 값을 2.5 이하로 유지하면 실무에서의 고유동 콘크리트는 양호한 재료분리 저항성을 관리할 수 있을 것으로 사료된다.

Study on the Performance Evaluation of CS-H Wall composed of Steel Fiber (강섬유를 이용한 CS-H 벽체의 성능 평가에 관한 연구)

  • YU, Nam-Jae;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2017
  • In this study, CS-H walls with large stiffness were constructed using geosythetics for use in excavation at a depth of 30 m or more in Korea, and in order to construct the CS-H wall suitable for the site conditions, the formulation was examined according to the change in the mixing ratio of the geosythetics and the slump value (slump flow) and as a result, in the target slump 180 mm and the slump flow 500 mm, the formulation was confirmed to meet the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus as well as the economic efficiency. However, in the slump flow 600 mm, the result indicated that the formulation was inappropriate in the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus.

Suitability Analysis of Slump and Slump Flow In the Fluidity Evaluation of Normal Strength Concrete (보통 콘크리트의 유동성평가에 슬럼프 및 슬럼프 플로우의 적합성 분석)

  • Song, Yuan-Lou;Zhao, Yang;Han, In-Deok;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.42-43
    • /
    • 2015
  • This study has analyze the suitable area of slump and slump flow among the fluidity evaluation of concrete by measuring slum and slump flow variation according to unit quantity and fine aggregate percentage in a low W/C mix. The fluidity of concrete can be expressed well with the slump value when sump value is 122mm or less. On the other hand, the fluidity of concrete can be expressed more accurately with slump flow value when slump is 122mm or greater.

  • PDF

Strength and Shrinkage of Geopolymer Mortar with Mineral Admixtures (혼화재료에 따른 지오폴리머의 강도 및 건조수축)

  • Yang, Joo-Kyoung;Kim, Hyo-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • Slump flow, compressive strength, flexural strength and drying shrinkage were measured to evaluate workability and mechanical performance of geopolymer. Experimental parameters include the addition of gypsum, blending ratio of blast furnace slag and fly ash and addition of shrinkage reducing agent. Geopolymer using blast furnace slag mixed with gypsum showed larger slump flow than blast furnace slag without gypsum. The slump flow when blending ratio of blast furnace slag and fly ash is 5:5 tended to be larger than the slump flow when blending ratio is 8:2. Geopolymer using blast furnace slag without gypsum showed higher compressive strength and flexural strength than blast furnace slag mixed with gypsum. Compressive strength and flexural strength tended to be higher when blending ratio of blast furnace slag and fly ash was 8:2 than when blending ratio was 5:5. Drying shrinkage decreased with increasing fly ash and blast furnace slag without gypsum, and it was found that shrinkage reducing agent is effective to reduce drying shrinkage of geopolymer.

The Quality Properties of Self-Compacting Concrete Mixed with Tailing from the Sangdong Tungsten Mine (상동광산 광미를 혼합한 자기충전 콘크리트의 품질 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.777-783
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder(TA) of self-compacting concrete(SCC). The experimental tests for slump-flow, time required to reach 500 mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The results of this study, slump-flow of SCC was satisfied a prescribed range. And time required to reach 500 mm of slump flow(sec) and time required to flow through V-funnel(sec) decreased with increasing replacement of TA. But filling height of U-box test(mm), replacement of TA up to 30% were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standards(KS). The compressive strength of SCC decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete. The fundamental durability was reviewed through the dry shrinkage rate and accelerated carbonation tests. As the result dry shrinkage rate and accelerated carbonation depth increased with increasing replacement of TA.

A Study on Field Application of 150MPa Ultra Strength Surface-Exposed Concrete (150MPa급 초고강도 노출콘크리트의 현장적용에 관한 연구)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.989-992
    • /
    • 2008
  • In this paper, we are presenting a case that integrates ultra high strength concrete(150MPa) with surface-exposed concrete. Ahead of the field application, we carried out laboratory experiment and B/P Test for a basic property of concrete(slump flow, air content, 50cm flow time, elapse time change and compression strength) and productivity. The next, we conducted Mock-up Test using simulation specimen to evaluate infilling, surface-finishing and hydration heat of concrete. We had satisfactory results for a basic property and hydration heat of concrete. However at the time of field application, it was occurred rupture of formwork because of high lateral pressure of concrete, and then formwork was reinforced and case-in-place time was adjusted. And regardless of low and high frequency vibration, it occurred to surface-pockmark. In case that applies ultra high strength concrete to surface-exposed concrete, we estimate that it is important of systematic management and improvement of construction.

  • PDF

The Fundamental Properties of High-Strength Concrete Using Pre-mixed Cement Corresponding to Water Binder Ratio (물 결합재비 변화에 따른 프리믹스 시멘트를 사용한 고강도 콘크리트의 기초적 특성)

  • Jin, Cheong-Ri;Han, Dong-Yeop;Kim, Ki-Hoon;Hwang, Yin-Seong;Kim, Sung-Su;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.369-372
    • /
    • 2008
  • This study analysis fundamental properties of high-strength concrete corresponding to W/B ratio for suggested table of high strength concrete, mixed with premixed cement. As a result of this study, the amount of using air entraining and high-range water reducing agent for intended slump flow and air content decreased as W/B increased, and the setting time corresponding to the W/B ratio delayed as W/B ratio increased except 20% W/B ratio. The compressive strength according to W/B ratio decreased as W/B ratio increased, and there was no great deferent as the intended slump flow. Also it could possible to use this study at work as the correlation coefficient is high enough as 0.9646 substituting B/W and compressive strength for the regression formula.

  • PDF

An Experimental Study for Basic Property of Ultra High-strength Concrete in a 100MPa class of Specified Concrete Strength (설계기준강도 100MPa급 초고강도 콘크리트의 기초물성에 관한 실험적 연구)

  • Gong Min-Ho;Yang Dong-Il;Jung Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.123-129
    • /
    • 2006
  • In these days, as building structures are getting taller, larger, and more diversified, structural systems with more economy and more efficiency are being required and so are more efficient building materials, this study conducted a basic experiment to conclude an adequate selection of materials and to calculate an optimal mixing proportion of those materials to produce High-strength concrete in a 100MPa of specified concrete strength. And also we conducted an experiment to find out basic properties of this concrete such as slump-flow, strength.

An Experimental Study on the Ductility Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 연성능력에 관한 실험적 연구)

  • 김용부;고만영;오명석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1998
  • 본 연구는 고성능 철근콘크리트 보의 연성능력에 관한 실험이다. 실험변수로는인장철근비( )와 하중재하형태(1점가력과 2점가력)가 있다. 콘크리트의 실린더 압축강도가 800-900㎏/㎠, 슬럼프 20∼25㎝ 및 슬럼프 플로우가 60∼70㎝인 고성능 철근콘크리트 보의 휨 실험 결과,고성능 콘크리트는 일반강도 콘크리트보다 취성적인 성질을 나타냈으며, 이러한 성질은 고성능 콘크리트의 연성능력을 감소시켰다. 고성능철근콘크리트의 경우 등가응력블록 변수는 MacGregor블록이나 New Zealand 규준을 사용하는 것이 바람직하다. 또한, 극한 곡률을 구할때는 cu= 0.0042값을 사용하는 것이 타당하다고 사료된다. 고성능 철근콘크리트 보의 경우, 현재 ACI 규준의 철근비에서 허용하는 2 및 4 이상의 연성지수 확보는 각각 '/ 0.30 범위에서 정적하중 상태의 경우 철근비가 - '=0.60 b이하에서 가능하고 휨 부재의 모멘트 재분배를 위한 경우는 철근비를 - '=0.33 b이하로 낮추어야 할 것으로 판단된다.

Statistical Evaluation of Mix proportion Factor of Antiwashout Underwater Concrete (통계적 분석에 의한 수중불분리성콘크리트 배합인자의 특성)

  • 원종필;임경하;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.66-76
    • /
    • 2001
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aims of this research is statistically evaluated to mix proportion factor of antiwashout underwater concrete. Experiment was performed to analyze the influence variables(cement, water, and antiwashout admixture) on fundamental characteristics of antiwashout underwater concrete. The influence variables can be considered for use in a wide range of underwater work where their have statistically significant effect on the characteristics(fluidity, filling ability, resistance to washout, etc.) of antiwashout underwater concrete.

  • PDF