DOI QR코드

DOI QR Code

Strength and Shrinkage of Geopolymer Mortar with Mineral Admixtures

혼화재료에 따른 지오폴리머의 강도 및 건조수축

  • 양주경 (청운대학교 토목환경공학과) ;
  • 김효정 (제이엔티아이엔씨)
  • Received : 2018.07.24
  • Accepted : 2018.12.31
  • Published : 2019.01.01

Abstract

Slump flow, compressive strength, flexural strength and drying shrinkage were measured to evaluate workability and mechanical performance of geopolymer. Experimental parameters include the addition of gypsum, blending ratio of blast furnace slag and fly ash and addition of shrinkage reducing agent. Geopolymer using blast furnace slag mixed with gypsum showed larger slump flow than blast furnace slag without gypsum. The slump flow when blending ratio of blast furnace slag and fly ash is 5:5 tended to be larger than the slump flow when blending ratio is 8:2. Geopolymer using blast furnace slag without gypsum showed higher compressive strength and flexural strength than blast furnace slag mixed with gypsum. Compressive strength and flexural strength tended to be higher when blending ratio of blast furnace slag and fly ash was 8:2 than when blending ratio was 5:5. Drying shrinkage decreased with increasing fly ash and blast furnace slag without gypsum, and it was found that shrinkage reducing agent is effective to reduce drying shrinkage of geopolymer.

본 연구에서는 지오폴리머 결합재인 고로슬래그를 분쇄할 때 석고의 혼입 여부, 고로슬래그와 플라이애시의 혼합비율과 수축저감제 첨가 여부를 변수로 하여 실험하였다. 실험에서는 슬럼프플로우를 측정하여 작업성을 파악하였으며, 압축강도와 휨강도 및 건조수축을 측정하여 역학적 성능을 파악하였다. 석고를 혼입한 고로슬래그는 혼입하지 않은 고로슬래그에 비해 슬럼프플로우가 커지는 경향을 보였으며, 고로슬래그와 플라이애시의 혼합비율이 5:5인 경우가 혼합비율이 8:2인 경우보다 슬럼프플로우가 커지는 경향을 보여 석고와 플라이애시가 지오폴리머의 작업성을 높여주는 것으로 나타났다. 석고를 혼입하지 않은 고로슬래그를 사용한 지오폴리머는 석고를 혼입한 고로슬래그를 사용한 경우보다 압축강도와 휨강도가 모두 크게 나타났으며, 고로슬래그와 플라이애시의 혼합비율이 8:2인 경우가 혼합비율이 5:5인 경우보다 압축강도와 휨강도가 커지는 경향을 보였다. 석고를 혼입하지 않은 고로슬래그를 사용하고 플라이애시의 혼합비율을 높일수록 건조수축은 감소되었으며 수축저감제도 지오폴리머의 건조수축 저감에 효과적임을 알 수 있었다.

Keywords

References

  1. Kwon, Y. H. (2013), A Study on Fundamental Properties of Alkali-activated Cement free Concrete using Industrial by-product, A master's thesis in Dong Yang University of Korea 41-48.
  2. Lim, M. K. (2018), A Study on the Strength and Durability Properties of Concrete According to the Fineness of Blast Furnace Slag and Substitutional Rate of Recycled Aggregate, A master's thesis in Dankook University of Korea 12-14.
  3. Yong, J., Shin, J. K., and Yoo, J. H. (2010), Investigation on the Ratio and Type of Gypsum for Early Strength Improvement of Blast Furnace Slag Powder, Magazine of RCR 5(4) 106-113.
  4. Park, H. S. (2008), Rheological Properties of Portland Cement -Blast Furnace Slag - Fly Ash Blends, A master's thesis in Dankook University of Korea 5-7.
  5. Kim, H. J., and Yang, J. K. (2017) Shrinkage Behavior of Geopolymer Mortar with Expansive Additive. Journal an academic conference of Concrete society 29(2) 597-598.
  6. Song, J. K., Song, K. I., and Yang, K. H. (2017), Importance and Characteristics of Geopolymer Concrete Technology, Magazine of RCR 12(1) 8-15. https://doi.org/10.14190/MRCR.2017.12.1.008
  7. Lee, D. W., Na, S. C., Seo, S. S., and Yoon, Y. S. (2001), Effect of Plaster on the Properties of Blast-Furnace Slag Cement, Korea Cement Association Cement Symposium 39-46.
  8. Hwang, J. N. (2011), Engineering properties of fly ash based-geopolymer mortars, A master's thesis in Kunsan national University of Korea 11-19.
  9. Koh, K. T., Lee, J. H., and Ryu, G. S. (2012), Development of Geopolymer Mortar Based on Fly Ash, Magazine of RCR 16(4) 119-126.
  10. Koh, K. T., Lee, J. H., and Ryu, G. S. (2013), Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag, Magazine of RCR 1(1) 35-41.
  11. Hahm, H. G., and Kim, T. W. (2012), Mechanical Properties of the Alkali-Activated Slag Mortar with Gypsum, Journal of the Korea Institute for Structural Maintenance and Inspection 16(3) 109-116. https://doi.org/10.11112/jksmi.2012.16.3.109
  12. Koh, K. T., Lee, J. H., and Ryu, G. S. (2010), Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag, Magazine of RCR 5(4) 114-121.
  13. Do, Y. S., Lee, K. P., Lee, S. S., and Song, H. Y. (2009), A study on optimum mixing derivation of the environment-friendly high performance geopolymer paste, Journal of the Korea Institute of Building Construction 9(2) 107-110.
  14. Kim, S. H., and Kim, Y. S. (2016), A Study on the Alkali-Silica Reaction of Binary Blended Geopolymer Mortar, Journal of the Architectural Institute of Korea Structure & Construction 32(6) 43-50. https://doi.org/10.5659/JAIK_SC.2016.32.6.43
  15. Koh, K. T., Ryu, G. S., Lee, J. H., Kang, H. J., and Jeon, Y. S. (2011), Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag, Magazine of RCR 6(1) 63-71.