• Title/Summary/Keyword: 슬래그 처리

Search Result 167, Processing Time 0.028 seconds

Further Treatment of Constructed Wetland Effluent using Filter Materials (여재를 이용한 인공습지 유출수 추가처리)

  • Haam, Jong-Hwa;Kim, Hyung-Joong;Kim, Yeong-Kyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • Further treatment facility using various filter materials was evaluated to treat effluent of constructed wetland. Further treatment facility was installed with 1m length in outlet of 3 constructed wetland (unplanted constructed; reed bed constructed wetland; cattail bed constructed wetland) using 3 filter materials (slag, activated carbon, oyster shell). Flow rate of three further treatment facility was 63 $m^3$/day (slag), 19 $m^3$/day (activated carbon), and 81 $m^3$/day (Oyster shell). COD removal rate of slag, activated carbon, and oyster shell was 6 %, 24 %, 1 %, and removal mass was 32 g/day, 30 g/day, and 5 g/day, respectively. All of further treatment facility was effective to removal organic materials. T-N and T-P removal rate of activated carbon was 24 % and 4 %, and slag and oyster shell was not effective to remove T-N and T-P. Overall, further treatment facility was effective to remove organic mater, constructed wetland combined with further treatment facility can remove nutrient and organic matters effectively.

  • PDF

The Charateristics of Melting Slag from MSWI and Sewage Water Filter Application (소각용융슬래그의 특성 및 수처리 여과재 활용에 관한 연구)

  • Park, Sang-Goo;Kim, Gun-Heung
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • The objective of the study is to find a way to utilize MSWI slag as filter material and to verify it. To do so, stability as filter material was tested, and used Ju-Munjin filter sand as control group to run actual filtering experiment to analyze filtering efficiency. According to result, MSWI slag is usable within designated waste acceptable standards. Also, it showed similar level of filtering capability to filter sand. Thus, MSWI slag could help to save and recycle resources if used as filtering material instead of filter sand As result of filtering test, SS and COD showed about same level of filtering capability similar to standard filter sand. MSWI slag has shown 26.96% higher with T-N, and 6.55% higher with T-P compared to standard filter sand. Also, remove efficiency comparison result with No. 40#(0.43mm) and mixed diameter showed equal or greater filtering capability.

Evaluation of Basic Oxygen Furnace Slag as Soil Conditioner in the Soybean Upland Field (밭토양 콩재배에서 제강슬래그의 토양개량제로서의 시용 효과)

  • Lim, June-Taeg;Kim, Hee-Kwon;Park, In-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.493-497
    • /
    • 2000
  • An experiment was conducted to evaluate the possibility of using basic oxygen furnace (BOF) slag as soil conditioner in soybean upland field. In 1997, soybean (Glycine max L. cv. Eunha) crop was cultivated under different application rates of BOF slag at an experimental field of Chonnam Rural Development Administration in Nampyung, Najoo city. Five treatments, four application rates of BOF slag (0, 4, 8, $12Mg\;ha^{-1}$) and one application rate of lime ($2Mg\;ha^{-1}$) were tried with three replications. Plant height and shoot dry weight per plant were measured five times during the growth period. Chemical contents of soybean plant tissues and soil were also measured at the same sampling date. Yield were estimated by harvesting $6.6m^2$ per experimental unit and yield components were measured by sampling 10 plants per experimental unit at the harvest date. In upland soil, application of BOF slag rarely affected contents of total nitrogen, organic matter, available phosphate and potassium in soil. Soil pH, and contents of Ca and Fe in soil became higher as BOF slag rate increased. Enhancement of soil pH by application of BOF slag appeared to be closely related with increase in soil Ca content. Application rate of $2Mg\;ha^{-1}$ of lime showed almost the same effect in increase of soil Ca content as application rate of $4{\sim}8Mg\;ha^{-1}$ of BOF slag. Slag treatment hardly affected the contents of total nitrogen, $P_2O_5$, CaO, $K_2O$ and MgO in the shoot of soybean plants. Soybean plants under treatments of BOF salg showed better growth from the earlier growth stage compared with those of control treatment, and at the later growth stage, their growth was even superior to that of lime treatment. BOF slag rate of $8Mg\;ha^{-1}$ showed the highest soybean yield with $1,232kg\;ha^{-1}$. which was $330kg\;ha^{-1}$ or 37% higher than the yield of control with $902kg\;ha^{-1}$, As a result, BOF slag appeared to be useful material as a soil conditioner as well as nurient source for Ca and Fe in upland soybean fields, and its optimal rate for higher yield seemed to be around $8Mg\;ha^{-1}$.

  • PDF

Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone (제강슬래그, 우분 및 석회석을 활용한 폐 석탄광의 산성광산배수 처리)

  • Jung Myung-Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.16-23
    • /
    • 2005
  • In order to remediate acid mine drainage (AMD) from the Jeongam coal mine, steel mill slag, cow manure and limestone were used. As a result of batch test, the proper amounts for treating 1 L of acid mine water from the mine were determined as 15 g of steel mill slag, 15 g of cow manure and 500 g of limestone. After feasibility test, remediation system was arranged in the order of steel mill slag tank combination of cow manure and limestone, precipitation tank and oxidation tank. During 54 days' operations, the pH values of the treated waters increased from 3.0 to 8.3 and 61 % of sulfate concentration in an initial water was decreased. In addition, the removal efficiencies for metals in the water were nearly 99.9% for Al, Fe, Zn and 92.6% for Mn. Thus, the combination of steel mill slag, cow manure and limestone can be used as neutralization 때d metal removal for acid mine drainage.

Effect of Water Quality Improvement of Fill Materals in the Stagnant Stream Channel (정체수역에서의 Mattress/Filter 채움재에 따른 수질개선효과)

  • Ko Jin Seok;Jeon Ji Young;Jee Hong Kee;Lee Soontak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.464-468
    • /
    • 2005
  • 산업활동으로 인해 발생하는 슬래그 등의 폐기물을 적절히 처리하는 방법으로서는 저비용 처리형태와 자연계에서 슬래그 등의 특성을 고려한 Filter 기능을 수행할 수 있도록 수질이 악화된 하천이나 정체수역에 투입시켜 수질을 개선시킬 수 있는 방법의 도입이 필요하다. 현재 POSCO에서 발생하는 슬래그와 폐콘크리트의 화학적 성분은 주로 $CaO,\;SiO_2,\;Al_2O_3,\;Fe_2O_3$ 등으로 이루어져 있으며, 침전유발물질 및 흡착성물질이 공존하고 있다. 다공질 형태의 비표면적을 가지고 있어서 정화용 필터로 이용하기에 좋은 이점을 가지고 있다. 슬래그나 폐콘크리트를 Mattress/Filter 채움재 및 수질정화용 여재로 활용하면 폐기물처리, 자원 재활용 그리고 수질 환경 개선의 세 가지 효과를 동시에 얻을 수 있는 방법이 된다. 본 연구에서는 슬래그와 폐콘크리트를 활용한 정체수역에서 정화시스템의 정화특성을 조사하기 위하여 유입수와 유출수의 pH, 용존산소, 질소, 인 등을 측정하여 비교하였다. 수질개선을 위한 Mattress/Filter 시스템의 기본개념은 하천의 오염된 물이 Mattress/Filter의 공극사이를 통과하면서 채움재에 형성된 생물막이 수질 개선과정에서 나타나는 접촉작용, 생물 흡착작용, 생물산화의 분해작용 등을 촉진시키도록 하였다. Mattress/Filter를 이용한 수중 수질개선시스템에서 채움재로 제철폐기물인 슬래그와 건설폐기물인 폐콘크리트를 사용함으로써 Mattress/Filter의 다공성 및 넓은 표면적이라는 특성에 따른 물리적$\cdot$화학적$\cdot$생물학적 작용이 촉진되고 있음을 확인할 수 있었으며, 그 결과 정체수역에 설치한 Mattress/Filter는 다공질 속에서 쉽게 생물막을 형성시키고 유기물의 흡착을 촉진시켜 오염물질을 정화하는데 필요한 자정작용의 효과 증대와 수질개선을 촉진시킬 수 있는 자연생태적 하천정화시스템임을 확인할 수 있었다.

  • PDF

Physical Properties of Permeable Concrete Using Slag as an Aggregate (슬래그 골재를 사용한 투수성 콘크리트의 물리적 성질)

  • 최재진;박원태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.404-408
    • /
    • 2003
  • This paper discusses the physical properties of permeable high quality concrete using blast furnace slag or steel slag as a part of aggregate. In the case of steel slag, aging treatment was adopted to prevent the volume expansion. With high range water reducing agent, the concrete using slag aggregate showed compressive strength up to 24MPa at the age of 28 days and the water permeability of the concrete was over the level of 0.1 m/s in this experiment. Also, there was no expansion problem in the concrete substituted with aged slag as a part of aggregate.

  • PDF

Assessment of Silicate Fetilizers Application Affecting Soil Properties in Paddy Field (논토양에서 규산질비료 시용이 토양 환경에 미치는 영향)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1016-1022
    • /
    • 2011
  • Application of silicate fertilizers is typically practiced with several year's interval to amend soil quality and improve rice productivity at the paddy field in Korea. Most of silicate fertilizers applied in Korea is slag-originated silicate fertilizer. Some water soluble silicate fertilizers are manufactured and commercially available. The objective of this study was to assess changes of soil chemical properties in paddy field by applying slag-originated silicate fertilizer and water soluble silicate fertilizer. Field experiment was conducted on a silt loam paddy soil, where four levels of each silicate fertilizer were applied in soil at the rate of 0, 1, 2, 4 times of the recommended levels. Application of slag-originated silicate fertilizer increased soil pH, while no significant pH increase occurred with the treatment of water soluble silicate fertilizers. Soil pH increased 0.4~0.5 with the 1 time of recommended level of slag-originated silicate fertilizer. Available $SiO_2$ contents also significantly increased with the treatment of slag-originated silicate fertilizer at 15 and 35 days after treatment, while decreased after 60 days after treatment possibly due to rice uptake. Exchangeable Ca, Mg and available phosphate contents in soil increased with application of slag-originated silicate fertilizer, while a little increases for them were shown with the application of soluble silicate fertilizer. $SiO_2$/N ratios in rice straw for 1 time of recommended level of slag-originated silicate fertilizer was 11.5, while that of control was 8.4, which was much lower value. Throughout this study, soil application of slag-originated silicate fertilizer enhanced soil chemical properties, while water soluble silicate fertilizer application in soil needs further study resulting in a little effects on soil property.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(II) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(II))

  • Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Hun-Ha;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1138-1142
    • /
    • 2002
  • Slag cement and supersulfated slag cement were fabricated by mixing blast furnace slag and ordinary portland cement and adapted to solidify/stabilize heavy metal contained hazardous waste sludge. In case of slag cement, it showed continuous increase of their compressive strengths, which is attributed to the formation of the C-S-H, ettringite and monosulfate with STS sludge. However, BF and COREX sludge has a different shape and composition. therefore, adequate compressive strength could not be achieved with this slag cement. In case of the mixture of the each sludge like the STS-BF or the STS-COREX, the compressive strength over the standard level for disposing the wastes could be obtained with slag cement. The supersulfated slag cement that contain accelerators was very effective in solidifying the COREX sludge, which was difficult to solidify using different cement and obtained high compressive strength only for 3 days.

A Study on Fundamental Properties of Rapid Cooling Slag to Utilize as Fine Aggregate for Concrete (콘크리트용 잔골재로 활용하기 위한 습식 급랭 전로슬래그의 기초 물성에 관한 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Se-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Recently, development of substitution aggregate is urgently needed because aggregate shortage is continuing due to the exhaustion of natural aggregate and strict restrictions of environment in construction industry. Therefore, In this study, new processing method to solve the problems of processing method of existing converter slag, namely, rapid cooling slag produced by the rapid cooling and crushing process of the high temperature melten slag into the rotary drum and then using the cooling water, compressed air and steel ball was examined fundamental properties for utilize as fine aggregate for concrete. In addition, through this study, we propose the utilization method of rapid cooling slag as fine aggregate for concrete.