• Title/Summary/Keyword: 스핀들 시스템

Search Result 84, Processing Time 0.027 seconds

외부 가압 공기 베어링으로 지지된 스핀들 시스템에서 축과 스러스트 베어링의 직각도 오차가 운전 정밀도에 미치는 영향

  • 고정석;조구환;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.129-134
    • /
    • 1997
  • 현재 외부 가압 공기베어링이 사용되어지는 분야는 PCB 기판, 엔진의 연료분사노즐 등의 고속가공용 스핀들, 전자 기기, 광학 기기 등에 사용되는 초정밀 부품가공용 스핀들, 정밀 측정 기기, 의료 기기, 저온 팽창기등 상대운동을 하는 많은 분야에서 이용되고 있으며, 이들 분야의 고속화 및 고정밀화 추세에 따라 고속에서의 안정성과 높은 운전정밀도가 보장된 외부 가압 공기 베어링이 요구되고 있다. 정밀 스핀들 시스템에 공기베어링이 사용되는 이유는 윤활제인 공기의 압축성에 기인된 평균화효과로 인하여 어느 정도 형상오차가 존재하더라도 축의 회전 시 떨림 진폭이 흡수되어 높은 운전정밀도를 유지하며 운전이 가능하기 때문이다. 그러나, 공기의 압축성에 의한 평균화효과로 어느 정도의 떨림 진폭은 흡수되나 형상오차에 의한 떨림 진폭은 작은 크기라도 여전히 남아있게 된다. 따라서, 초정밀 가공 기기나 정밀 측정 기기 등 높은 운전정밀도가 요구되는 곳에 공기베어링이 사용될 경우에 있어서 형상오차는 운전정밀도에 영향을 미치는 중요한 인자가 된다. 본 연구에서는 각각 두 개의 오비 가압 공기 저널 및 스러스트 베어링으로 구성된 스핀들 시스템에 대한 축과 베어링의 직각도 오차가 운전정밀도에 미치는 영향에 대해 해석하고 결과를 고찰하여 스핀들 시스템에 있어서 형상 공차에 대한 기초 설계자료를 제시하고자 한다.

  • PDF

Analysis of Dynamic Behavior and Balancing of High Speed Spindle (고속 스핀들의 동적거동과 밸런싱 해석)

  • Koo, Ja-Ham;Kwon, Soon-Goo;Kim, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.238-244
    • /
    • 2017
  • A spindle with a built-in motor can be used to simplify the structure of a machine tool system, but the rotor inevitably has unbalanced mass. This paper presents an analysis of the dynamic behavior. The spindle was used in a CNC lathe and investigated using the finite element method and transfer matrices. The high-speed spindle can be very sensitive to the rotation of an unbalanced mass, which has a harmful effect on many machine tools. Thus, a balancing procedure was performed with a spindle-bearing system for the CNC lathe by numerical analysis. The balancing was performed through the influence coefficient method, and the whirl orbit radii before and after balancing were compared to evaluate the effects. The results show that the rotational speed of the spindle seriously affects the whirl responses of the spindle. The whirl responses were also affected by other factors, such as the unbalanced mass and bearing stiffness. The balancing of the assembled spindle model significantly reduced the whirl orbit magnitude.

Improvement of Speed Control for Spindle Induction Motor in the Field Weakening Region using a Fuzzy Controller (퍼지 제어기를 이용한 약계자 영역에서 스핀들 유도전동기의 속도제어 개선)

  • Yu, Jae-Sung;Sin, Soo-Cheol;Yoon, Ju-Man;Won, Chung-Yuen;Kim, Sang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.48-55
    • /
    • 2005
  • This paper presents a new speed control scheme of the spindle induction motor(IM) using fuzzy controller(FC) in field weakening region. The implementation of the proposed FC based spindle Induction Motor(IM) is compared to those obtained from the conventional PI controller based drive system. The simulation and experimental results show that the FC is the high performance more than the conventional PI speed controller in the spindle drive systems.

A digital measurement method for rotational errors of a machine spindle (스핀들 회전 오차 측정의 디지틀 방법에 관한 연구)

  • 공인복;박윤창;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.443-450
    • /
    • 1989
  • A digital testing method for measurement of radial error motions of a spindle is investigated with special emphasis on developing a computer-aided in-situ inspection for machine tool manufacturing. The method utilizes three non-contact type probes and an optical encoder, based on a special computational algorithm to eliminate undesirable offset and roundness errors of the master spindle. Details of the design of hardware and software required to realize the testing method are described. Finally, advantages and limitations of the method are discussed with several test results.

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

Vibration Suppression of HDD Spindle System Using Piezoelectric Shunt Damping (압전 션트 댐핑을 이용한 HDD 스핀들 시스템의 진동 저감)

  • 임수철;박종성;최승복;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1089-1094
    • /
    • 2003
  • A main vibration source in HDD is arisen from high rotating disk/spindle, and vibration suppression of the disk-spindle system becomes a critical issue and a major concern for high performance of the drive. In this paper, we study the feasibility of suppressing unwanted vibration of disk-spindle system of the HDD by external shock and excitation utilizing piezoelectric shunt damping methodology. By considering dynamic characteristics of the disk-spindle system through modal analysis, a target vibration mode is determined and then the piezoelectric material is carefully integrated to the modified drive. In order to maximize improvement of vibration characteristics of the proposed system, shunt circuit is optimally designed via tuning processes. Finally, the vibration characteristics of the high rotating disk-spindle system of the proposed drive is experimentally evaluated in frequency domain.

  • PDF

Vibration Suppression of the HDD Spindle-Disk System Using Piezoelectric Bimorph (압전 바이모프를 이용한 HDD 스핀들-디스크 시스템의 진동저감)

  • Lim, S.C.;Park, J.S.;Choi, S.B.;Park, Y.P.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents the feasibility of the piezoelectric shunt damping for vibration suppression of the highly rotating HDD disk-spindle system. A target vibration mode which restricts the recording density increment of the drive is determined by modal analysis of the drive, and a piezoelectric bimorph is designed to suppress the vibration level of the target mode. After deriving the generalized two-dimensional electromechanical coupling coefficient of the shunted spindle-disk system, the damping performance of the system is predicted by simulating the displacement transmissibility on the target mode. After manufacturing the proposed drive, the vibration suppression performance of the proposed methodology is experimentally evaluated in frequency domain.

  • PDF