• Title/Summary/Keyword: 스펙트럴 요소법

Search Result 44, Processing Time 0.044 seconds

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Spectral Element Modeling of an Extended Timoshenko Beam: Variational Approach (변분법을 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링)

  • Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1403-1406
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method (스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석)

  • Lee, Joon-Keun;Lee, U-sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.

The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures (대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가)

  • Han, Sang-Eul;Lee, Sang-Ju;Cho, Jun-Yeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

A Study on the Development of 2-Dimensional Numerical Wave Tank by the High-Order Spectral Method (고차 스펙트럴법에 의한 2차원 수치 파수조 개발에 관한 연구)

  • Y.J. Kim;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 1992
  • By introducing a body potential, the high-oder spectal method of Dommermuth and Yue(1987) is extended to treat the nonlinear interactions between the free surface and the submerged cylinder. A 2-dimensional numerical wave tank is developed based on this numerical scheme, and applied to the wave resistance problem and the wave maker problem. In the simulations, it is shown that the transient waves due to the impulsive start of the body motion make a practical obstacle to the acquisition of useful data from the numerical experiments. Gradual starting procedures are devised, and successful result of the quasi-steady state or the uniform regular wave group was obtained. Within the author's present knowledge, the present numerical scheme is one of the most efficient numerical schemes which can treat the nonlinear interactions between the free surface and the body motion in time-domain.

  • PDF

A Numerical Study of Nonlinear Free-surface Flows Generated by Motions of Two Dimensional Cylinders (2차원 실린더의 운동에 기인한 비선형 자유표면 유동의 수치해석)

  • Lee, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 1998
  • 본 논문의 수치해법은 경계치문제를 풀기 위하여 코시이론(Cauchy's theorem)을 사용하였다. 경계치문제는 완전한 물체표면조건과 자유표면조건을 만족시키는 초기치문제로 귀결된다. 현 수치해법에서 무한영역은 수치계산 영역인 비선형 영역과 선형 자유표면조건을 만족하는 선형영역으로 나누어진다. 선형영역의 해는 과도 그린(Green)함수를 사용하여 정합조건을 부과함으로써, 수치계산은 비선형 영역에서만 수행된다. 본 논문에서 저자는 수치계산 영역에서 코시이론을 사용하여 적분방정식을 도출하였고, 무한영역의 해는 정합면에서 과도 그린함수를 사용하여 표현하였다. 본 수치계산에서 자유표면에 요소 재분배법을 적용함으로써 쇄파현상에 대해서도 안정적인 수치해석을 할 수 있었다. 본 논문에서 개발된 수치방법을 적용한 문제는 다음과 같다. 첫째는 자유표면에서 실린더가 강제동요하는 경우에 자유표면형상과 힘을 계산하여 이전의 실험치 및 계산치와 비교하였다. 두번째로는 실린더가 자유수면하에서 일정한 속도로 항주하는 경우에는 조파저항과 양력을 계산하여 고차 스펙트럴법과 비교하였다.

  • PDF

Spectral Element Method for the Dynamic Behaviors of Plate (스펙트럴요소법을 이용한 평판의 동적거동해석)

  • 이상희;이준근;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.328-334
    • /
    • 1996
  • Finite Element Method(FEM) is the most popularly used method in analyzing the dynamic behaviors of structures. But unless the number of finite elements is large enough, the results from FEM are somewhat different from exact analytical solutions, especially at high frequency range. On the other hand, as the Spectral Element Method(SEM) deals directly with the governing equations of structures, the results from this method cannot but be exact regardless of any frequency range. However, despite two dimensional structures are more general, the SEM has been applied only to the analysis of one dimensional structures so far. In this paper, therefore, new methodologies are introduced to analyze the two dimensional plate using SEM. The results from this new method are compared with the exact analytical solutions by letting the two dimensional plate be one dimensional one and showed the dynamic responses of two dimensional plate by including various waves propagated into x-direction.

  • PDF

Spectral Element Modeling of Rotating Shafts by Using Variational Method (변분법을 이용한 회전축의 스펙트럴요소 모델링)

  • Yong, Suk-Jin;Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.923-926
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. A spectral element model is developed by using the variation method for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF