• 제목/요약/키워드: 스패터

검색결과 60건 처리시간 0.025초

단락순간의 전류제어에 의한 $CO_2$ 인버터 아크 용접기의 스패터 저감 (The reduction of spatter in $CO_2$ inverter Arc Weling machine by the current control at the moment of short)

  • 고재석;채영민;이승요;목형수;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.585-590
    • /
    • 1999
  • The conventional $CO_2$ inverter arc machine has constant voltage output characteristic and uses constant wire speed controller for welding current control. By adoption of PWM inverter to the welding machine, the spattering was reduced rather than the thyrister arc welding machine or AC arc welding machine. Moreover, by the high switching frequency, the output reactor size could be reduced evidently. Recently, the studies on optimal voltage and current waveform for the welding performance improvement have been studied. In this paper, a new instantaneous output current control scheme during the short circuit mode was proposed and showed the capability of arc stability improvement and the reduction of spatter generation.

  • PDF

고출력 $CO_2$ 레이저 용접시 포토 다이오드를 이용한 플라즈마와 스패터 모니터링 (Monitoring of plasma and spatter with photodiode in $CO_2$ laser welding)

  • 박현성;이세헌;정경훈;박인수
    • 한국레이저가공학회지
    • /
    • 제2권1호
    • /
    • pp.30-37
    • /
    • 1999
  • Laser-welded Tailored Blank is the hottest thing in many automobile companies. But they demand on weld quality, reproducibility, and formability. So it is the great problem of automation of laser welding process. Therefore, it is requested to construct on-line process monitoring system on high accuracy. The light which is emitted from plasma and spatter in laser welding was detected by photo-diodes. It was found that the light intensity depends on welding speed. laser power, and flow rate of assist gas. The relationship between the plasma and spatter and the weld quality can be used for on-line laser weld monitoring systems.

  • PDF

GMAW 용적이행 현상에 미치는 Ca의 영향 (Effect of Ca on Droplet Transfer Phenomena in GMA Welding)

  • 안영호;방국수;이종봉;장내웅
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.76-84
    • /
    • 1994
  • Droplet transfer modes due to welding conditions and the effect of Ca in welding wire on droplet transfer were investigated. Droplet transfer mode in CO$_{2}$ welding was classified into 2 modes, that is, short circuit and globular transfer, with increasing welding current and voltage. With increasing Ca content in wire, repulsive pressure due to vaporization of Ca was considerably increased. In short circuit transfer region, arcing time was increased and droplet transfer cycle was decreased, with increasing Ca content. In globular transfer region, welding condition for globular transfer was lower current region, with increasing Ca content.

  • PDF

$CO_2$ 용접의 단락이행영역에 있어서 스패터 발생특성 (Characteristics of Spatter Generation in the Short Circuit Transfer Region of $CO_2$ Arc Welding)

  • 안영호;이종봉;최원규
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.630-635
    • /
    • 2001
  • The characteristics of spatter generation in the short circuit transfer region of $CO_2$ welding was investigated. Spatteriing phenomena could be classified into three types : Type I generated due to the abrupt increase of arc voltage in arcing duration. Type II by the gas ejection from molten metal and Type III generated by the arc instability at the moment of arc re-ignition just after short circuiting. Main observed types were dependent on the chemical composition of welding wires. The case of YCW12 wires was mainly composed of spatters generated by Type l and Type II, while most, spatters in YCW11 wires were generated by Type II and Type III.

  • PDF

대전류 $CO_2$ 용접에서 스패터 저감을 위한 파형제어 기법 개발 (Development of Waveform Control for Suppressing the Spatter Generation)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.643-651
    • /
    • 2001
  • A new waveform control technique has been developed for suppressing the spatter generation in the repelled transfer mode of high current $CO_2$ welding. Based on the spatters in repelled transfer, a waveform concept of concept was established in a way to drop the welding current to lower level right before the pendant weld drop detatchment so that the explosion force associating with drop detatchment was decreased. There were several variables to be controlled such as the moment of current drop, the base current and the time of retention at the base current. Either at lower base current or at longer retention time, the more instantaneous shot circuits were int개duced and thus the spatter generation rates were increased. With optimizing the control variables, the amount of spatter generated was decreased by about 30%.

  • PDF

$CO_2$ 용접에서 전류 펄스 조건이 스패터 발생에 미치는 영향 (The Effect of Current Pulsing Parameters on the Spatter Generation Rate during $CO_2$Shielded Gas Metal Arc Welding)

  • 강덕일;최재호;장영섭;김용석
    • Journal of Welding and Joining
    • /
    • 제16권4호
    • /
    • pp.63-72
    • /
    • 1998
  • In this study, the effects of the current pulsing conditions, on the spatter generation rate during the $CO_2$ gas metal arc welding (GMAW) were investigated. Normally using the inverter type power supply, of which the welding current waveform was regulated to reduce the spatter generation rate, but in this study pulsing was imposed on the welding current. Observation of the metal transfer phenomena during the pulsed current GMAS indicated that the droplet transfer from the electrode via the short circuit transfer and the repelling transfer mode could be minimized by selecting optimum combinations of pulsing parameters, which include base and peak current, base and pak duration. It was also demonstrated in this study that proper combinations of the pulsing parameters led to reduce generation of spatters during GMAW shielded by $CO_2$ gas.

  • PDF

팁 선단에 중공이 있는 전극을 이용한 스패터 저감 스폿 용접에 관한 연구 (A Study of Spot Welding Process to Reduce Spatter with the Hollow Tip)

  • 전정상;이세헌
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.44-48
    • /
    • 2009
  • In automotive company, a lot of researchers have investigated for the spatterless welding process during last two decades. A spatter influences on the product quality such as strength and surface states. In this paper, a hollow tip is proposed for spatterless process. An optimal size of electrode hole is obtained from a weldability evaluation of each hole diameter. Through the cross section analysis, a phenomenon that molten metal moves in the hole which located between two workpiece is observed, and this makes spatterless welding process even though current is higher. Finally, widely acceptable weld area in lobe curve is obtained by using hollow tip as compare with conventional no hollow tip. In this paper, spatterless resistance spot welding with improvement weldability and productivity is proposed by using hollow tip.

FCAW의 혼합가스 변화에 따른 용접 모니터링과 특성에 관한 연구 (Study of the welding monitor and characteristics according to a change in Gas mixture by FCAW)

  • 임병철;강철순;박상흡
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5933-5938
    • /
    • 2014
  • 본 연구에서는 Atos 60의 시험편에 혼합가스의 변화에 따른 FCA용접을 하였고, 용접특성 분석 위하여 용접공정상의 실시간 모니터링 시스템과 용접 후 기계적 성질을 평가 하였다. Ar 80%+$CO_2$ 20% 혼합하고 낮은 속도로 용접한 경우 가장 미려한 비드와 스패터 발생이 적게 나타났으며, 반면 $CO_2$ 100%인 경우 스패터가 많이 발생하는 것을 확인하였다. 정상단락이 발생하는 저전류 영역으로 혼합가스의 사용에 대한 스패터 발생을 확인 할수 있는 조건이며, $CO_2$ 100%인 경우 각층의 단락율은 약 2배 이상 높았고, Peak의 분포가 많은 아크의 불안정 상태로 나타났다. 인장시험결과 Ar 80%+$CO_2$ 20%, Ar 90%+$CO_2$ 10%, $CO_2$ 100%의 항복강도는 각각 511MPa, 507MPa, 469MPa 이었으며, $CO_2$ 100%의 항복강도 보다 각각 약 8.9% 8.1% 향상되었다. 인장강도는 각각 622MPa, 609MPa, 581MPa로 $CO_2$ 100%의 인장강도 보다 각각 약 7.0%, 4.8% 향상되었다.

고능률 GMAW의 용접성에 미치는 보호가스의 영향 (Effect of Shielding Gases on the Weldability of High Efficient GMAW Process)

  • 한기형;한종만;이민우;이은배;한용섭
    • Journal of Welding and Joining
    • /
    • 제13권1호
    • /
    • pp.127-137
    • /
    • 1995
  • The possibility of new GMAW process using economic shielding gases including CO$_{2}$ gas was investigated on the effect of shielding gas on weldabilty. In the optimum welding condition using 600A power source, FCAW process showed low depositions rate, 114 g/min at 300A, but new GMAW using other mixed shielding gases exhibited high deposition rate, 208-224 g/min at 450A. TIME gas, Ar+CO$_{2}$ gas and Ar+CO$_{2}$+O$_{2}$ gas as a shielding gas were able to be used to the very high welding current(450A), moreover TIME gas and Ar+CO$_{2}$ gas showed the highest arc stability among shielding gases studied in this experiments. The weld penetration was performed by axial spray transfer mode of weld droplet. On the basis of workability, weldability and economic point of view, Ar mixture (80%Ar+20%CO$_{2}$) gas was recommended as a shielding gas for the development and application of new GMAW process. This shielding gas showed the low spatter, good weld quality, stable arc and low cost at the region of high welding current.

  • PDF

고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰 (Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition)

  • 정영철;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.