센서 네트워크는 애플리케이션 분야에 따라 데이터 특성과 사용자의 요구사항이 다양함에도 불구하고, 현존하는 스트림 데이터 축소 연구는 데이터의 본질적인 특징보다 특정 축소 기법의 성능 향상 측면에 중점을 두고 있다. 이 논문은 계층/분산형 센서 네트워크 구조와 데이터 모델을 소개하고, 선택적으로 축소 기법을 적용하기 위해 데이터 특성과 사용자의 요구에 적합한 다변량 데이터 축소 기법을 비교 평가한다. 다변량 데이터 축소 기법의 성능을 비교 분석하기 위해, 우리는 웨이블릿, HCL(Hierarchical Clustering), SVD(Singular Value Decomposition), 샘플링과 같은 표준화 된 다변량 축소 기법을 이용한다. 실험 데이터는 다차원 시계열 데이터와 로봇 센서 데이터를 사용한다. 실험 결과 SVD와 샘플링 기법이 상대 에러 비율과 수행 성능 측면에서 웨이블릿과 HCL기법에 비해 우수하였다. 특히 각 데이터 축소 기법의 상대 에러 비율은 입력 데이터 특성에 따라 다르기 때문에 선택적으로 데이터 축소 기법을 적용하는 것이 좋은 성능을 보였다. 이 논문은 다차원 센서 데이터가 수집되는 센서 네트워크를 디자인하고 구축하는 응용 분야에 유용하게 활용될 것이다.
유비쿼터스 센서 네트워크를 통해 수집되는 데이터는 끊임없이 변화하는 스트림 데이터이다. 이 스트림 데이터는 기존의 데이터베이스와는 매우 다른 특성을 가지고 있어서, 이를 저장하고 분석 및 질의 처리하는 방법에 대한 새로운 기법이 필요하며, 이에 대한 연구가 최근에 많은 관심을 끌고 있다. 본 연구에서는 센서 네트워크로부터 끊임없이 들어오는 스트림 데이터를 수집하고 이를 효율적으로 데이터베이스에 저장하는 저장 관리자를 구현하였다. 이 저장 관리자는 무선 센서 환경에서 발생하는 오류에 대한 정제, 반복적으로 센싱되는 동일한 데이터에 대한 축소 기능, 장기간의 스트림 데이터를 경동 시간 구조로 유지하는 기능 등을 제공한다. 또 이 연구에서는, 구현된 저장 관리자를 건물의 온도, 습도, 조도 등을 수집하는 건물 화재 감시 센서네트워크에 적용하여 그 성능을 측정하였다. 실험 결과, 이 저장 관리자는 스트림 데이터의 저장 공간을 현저히 줄이며, 건물 화재 감시를 위한 장기간의 스트림 데이터를 저장하는데 효과적임을 보였다.
u-Health 시스템의 센서들로부터 측정된 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 센서네트워크에서 대용량의 입력 스트림 데이터 전체를 데이터베이스에 모두 저장하여 한꺼번에 처리하는 것은 효율적이지 못하다. 본 논문에서는 u-Health 시스템 내 센서 네트워크의 에너지 효율성과 정확성을 고려하여 여러 센서에서 지속적으로 들어오는 다차원 스트림 데이터의 처리 성능을 높이고자 한다. 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 질의를 처리하고 Mjoin 방법으로 다중 질의 계획을 수립한 후 역전파 알고리즘을 통해 저장 데이터를 축소하는 효율적인 처리 기법을 제안한다. 14,324개의 데이터 집합을 사용하여 실험한 결과 실제 입력되는 데이터보다 저장 공간의 18.3%를 축소함으로써 효과적임을 보였다.
디지털 선박에서는 선박 내의 각종 센서로부터 측정된 디지털 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 센서 네트워크에서 대용량의 입력 스트림 데이터 전체를 데이터베이스에 모두 저장하여 한꺼번에 처리하는 것은 효율적이지 못하다. 본 논문에서는 디지털 선박 내 센서 네트워크의 에너지 효율성과 정확성을 고려하여 여러 센서에서 지속적으로 들어오는 다차원 스트림 데이터의 처리 성능을 높이고자 한다. 디지털 선박 내에 다수 개의 센서(온도, 습도, 조도, 음성 센서)를 배치하고 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 질의를 처리하고 Mjoin 방법으로 다중 질의 계획을 수립한 후 SVM 알고리즘을 통해 저장 데이터를 축소하는 효율적인 처리 기법을 제안한다. 분류된 데이터들 중 필요하지 않는 데이터는 자동으로 데이터베이스에서 삭제되고 유효한 데이터는 디지털 선박 모니터링 시스템에 이용하였다. 35,912개의 데이터 집합을 사용하여 실험한 결과 실제 입력되는 데이터보다 저장 공간의 18.3%를 축소함으로써 효과적임을 보였다.
데이터 스트림이란 새로운 개념과 기존의 단순 데이터 사이에 존재하는 개념적 차이를 극복하기 위해서는 많은 연구가 필요하다. 대표적인 예로써 센서 네크워크에서의 데이터 스트림 처리를 들 수 있는 데, 이를 위해서는 대역폭이나 에너지, 메모리와 같은 자원적 한계에서 부터 연속 질의를 포함하는 질의처리의 특수성까지 고려해야 할 대상이 광범위하다. 본 논문에서는 데이터 스트림 처리에서의 물리적 제약사항에 해당하는 한정된 메모리 문제를 해결하기 위해 PCA 기법을 기반으로 하는 데이터 스트림 축소 방안을 제안하다. PCA는 상호 관련된 다수의 변수들을 관련이 없는 적은 수의 변수로 변환해준다. 본 논문에서는 질의 처리 엔진의 협력을 가정하고서 센서 네크워크의 스트림 데이터 처리를 위해 PCA 기법을 적용하며, 다른 센서로부터 얻어진 많은 측정값 사이에 시공간적 관련성을 이용한다. 최종적으로 그러한 데이터 처리를 위한 프레임워크를 제시하고 다양한 실험을 통하여 기법의 성능을 분석한다.
무한히 발생되는 실시간 데이터와 디스크에 저장된 히스토리컬 데이터를 동시에 처리하는 하이브리드 질의에 관한 연구가 활발히 이루어지고 있다. 하이브리드 질의는 디스크에 저장된 대용량의 공간 데이터 처리를 위해 빠른 디스크 입/출력을 요구한다. 이러한 데이터를 처리하기 위해 인덱스, 데이터 축소 기법등이 연구되었다. 데이터의 빠른 검색을 위한 인덱스 기법은 디스크에 분산 저장된 데이터에 대한 탐색 비용과 입/출력 비용을 줄이지 못한다. 또한, 샘플링을 통해 디스크 입/출력 시간 비용을 줄이는 데이터 축소 기법은 데이터의 정확성을 떨어뜨려 정확성을 요구하는 하이브리드 질의에서는 이용하기가 어렵다. 이논문에서는 디스크 입/출력 시간과 디스크 탐색 시간 비용을 줄이고, 정확성을 보장하는 과거 공간질의 처리를 위한 고속로딩 기법을 제아난다. 제안기법은 공간을 그리드 형태로 나누고 인접한 공간 데이터를 함께 관리함으로써 디스크 입/출력 비용을 줄 일 수 있다. 또한, 공간적으로 인접한 데이터를 물리적으로 인접한 곳에 저장하여 디스크 탐색시간 비용을 줄일 수 있다. 이렇게 저장된 데이터는 손실 없이 모두 저장되며, 정확성 또는 보장할 수 있다.
본 논문은 이미지 데이터의 효율적인 코딩에 대한 새로운 방법을 나타낸다. 웨이블릿 변환을 기초로 한, 알고리즘은 서브밴드 간의 남아 있는 상관관계를 이용한다. 웨이블릿 계수들에 대한 성공적인 대략값은 계층적인 심볼 스트림을 초래하고, 그것은 PSD(의미있는 자손에 대한 예언)과 함께 매우 높게 압축된다. 코딩 알고리즘은 이미지 컨텐트에 대한 높은 적응성에 의해 그 자체를 구별한다. 초래하는 비트스트림은 그것들의 중요도에 대한 순서에 있어서 모든 이미지 정보를 구성한다. 그러므로 그것은 위험한 디코딩 과정 없이 어떤 지점에서 절단하는 것이 가능하다. 이러한 내장된 비트스트림의 이점은 공간적인 규모성(scalability)과 왜곡율이다. 좀 더 나은 향상은 웨이블릿 패킷으로 알려진 새로운 적응적인 웨이블릿 변환을 사용하여 획득된다. 초기의 기법들과 적합하지 않은 현재의 서브밴드에 대한 관련성있는 통계적인 특성들(특히 상관관계)은 처음으로 분석된다. 그것들에 의존하는, 서브밴드가 분해 유무에 관계없이 분해 결정이 만들어진다. 이러한 결과는 최고의 기본적인 선택이 아니고 최적에 가까운 분해 구조를 초래한다. 본 논문에서 제안한 모델의 가장 주요한 이점은 계산적인 비용의 축소이다.
처리시간 지연에 민감한 패킷 플로우, 비디오, 오디오 스트림과 같은 어플리케이션을 보안성이 없는 인터넷상에서 멀티캐스팅할 때에 데이터의 기밀성, 메시지 또는 발신자 인증, 무결성 그리고 부인 방지 등의 보안 서비스를 제공하기 위해서는 여러 가지 암호 및 인증 기법이 필요하다. 본 논문에서는 이러한 멀티캐스트 스트림과 플로우에 대한 서명/인증 기법의 특성과 요구사항을 분석해 보고 기존에 제시된 each-sign 기법, one-time 서명 기법, star-chaining 기법, 그리고 Tree-chaining 기법에 대한 상호 비교 및 분석을 통해 이들의 서명/검증 계산시간과 통신 트래픽 오버헤드에 대한 단점을 효율적으로 개선하여 Enhanced Tree-chaining 기법을 제안한다. 서명 및 검증 시간은 약 50% 단축되며 통신 오버헤드는 log2n배 축소되는 향상을 기대할 수 있다. 또한 인증 소요 시간에 주요 요인이 되는 것은 서명/검증의 계산시간이 아니라 chaining 오버헤드의 크기임을 유추해 낸다.
인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.
본 논문에서는 화상회의나 VOD(주문형비디오)와 같은 멀티미디어 응용은 주기적인 데이터 전송을 위해서 많은 전송 대역폭을 요구하고 있다. 그러나 인터넷과 같은 TCP/IP 기반의 통신망에서는 멀티미디어 스트림을 주기적으로 전송하고 이에 필요한 대역폭의 할당 가능성을 보장할 수가 없다. 따라서 본 논문은 주기적으로 네트워크 상태를 감시하여 필요에 따라 송신자의 전송율을 조정하며, 미리 채널에 대한 요구를 예측하고 네트워크 상태에 대한 피드백 정보를 통해 멀티미디어 데이터의 실시간 전송과 서비스 품질을 유지하기 위한 네트워크 지연시간 축소 기법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.