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A PCA-based Data Stream Reduction Scheme for Sensor Networks

obel 2y o =] B A o g 5 o)z
Alexander Fedoseev Young-Hwan Choi Eenjun Hwang
2 oF
toly 2EFold A2 g 71E9] de toly Atold]l EAdhe /A ApolE S5 SlelA = B2 It
dastth dxd A=A AM vag2AX 9 Hold 2EY HE & F Ue U, ol fsME dFely duA,
A

Ty

Wwels e A GANA HE A% Ao THHE AN 44N TNl T hol IR, 2

NIOFH‘

%OM% dole] 2E" AT o9 E2]& Afatedd s Fsls A R £AE 12387 98] PCA NTHE 71&
2 3 Holg 2EY 4 HPOP" A oksit, PCAE AT AHE T MFES Ao Qe 3L o MR W E
o B =2olAMe Y AP A9 g /M A U333 2EH HolH A E A3 PCA 7]“*° @ﬁ“}ﬂ%,
U2 ANZEH dojd B é@%k Abolo] Alg7he #AH S o] &ttt HFHoZ Tt diolE A E s ZH U
A5 AN Thekd *E‘?J% 5319 7Y Aes EAEth
Abstract

The emerging notion of data stream has brought many new challenges to the research communities as a consequence
of its conceptual difference with conventional concepts of just dafa. One typical example is data stream processing in sensor
networks. The range of data processing considerations in a sensor network is very wide, from physical resource restrictions such
as bandwidth, energy, and memory fo the peculiarities of query processing including contfinuous and specific types of queries.

In this paper, as one of the physical constraints in data stream processing, we consider the problem of limited memory and
propose a new scheme for data stream reduction based on the Principal Component Analysis (PCA) technique. PCA can
fransform a numiber of (possibly) correlated variables into a (smaller) number of uncorrelated variables. We adapt PCA for the
data stream of a sensor network assuming the cooperation of a query engine (or application) with a network base station.
Our method exploits the spatio-temporal correlation among multiple measurements from different sensors. Finally, we present
a new framework for data processing and describe a number of experiments under this framework. We compare our scheme
with the wavelet fransform and observe the effect of time stamps on the compression ratfio. We report on some of the results.
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sensor network, data stream, data reduction, data approximation, principal component analysis

1. INTRODUCTION elucidated by Mark Weiser [1] in 1991. The main
idea of ubiquitous computing is to transparently

The principle of ubiquitous computing was first integrate computations into the environment by
making wireless networks consisting of tiny nodes

* 23 9. LG Az containing several sensors for monitoring the
] alisher@koreaackr ) environment such as  temperature, humidity,
oA ijkagforizﬁz}%gﬁ% BRI illumination, etc. [2, 3, 4]. There are many emerging
s 2 3] 9. HY S A7) ARAGLEE Rys applications based on such a sensor network
ehwang04 @korea.ac kr(aL 41 4] ) including health monitoring, passenger support
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systems, various financial applications, smart home,
and network monitoring [5, 6].

Since its emergence, enabling data stream
processing has caused a wide variety of new tasks
and challenges related to different fields of modermn
science. In this paper, we consider a data stream as
a distributed and continuous information source.
Data streams have a number of differences compared
to conventional stored relational data [7]:

1. The data elements in the data stream arrive
online, while conventional data is permanently
stored.

2. The receiving system has no control over the
order in which data elements arrive for
processing, while traditional data can be
distributed in any suitable manner.

3. Data streams are potentially unbounded in size,
which is not acceptable for stored relational
data.

4. Once a data stream element has been

processed, it is eliminated or archived.

In this paper, we focus mostly on the third item
in the list. Since data streams are unbounded, we
may need an unlimited amount of memory to
provide an appropriate speed of processing. Here, we
present a framework for data reduction: query
preprocessing that works as collaboration between a
network base station and a query processing engine.
Our approach is based on the inherent property of
real world sensor measurements, namely, a
spatio-temporal correlation of data tuples. At the
core of the framework lies a well-known
dimensionality =~ reduction  technique, Principal
Component Analysis (PCA). PCA transforms a
number of (possibly) correlated variables into a
(smaller) number of uncorrelated variables called

principal components. We establish two different
types of data reductions, horizontal and vertical
reductions. We propose a technique for selecting one
between them for better performance and prove the
effectiveness of our scheme through experiment.

2. RELATED WORK

Although we know that data approximation is
unavoidable, there still exist applications with an
exact query evaluation requirement. This means that
lossy approximation is inappropriate. In [8],
conjunctive SPJ (Select-Project-Join) queries with an
arithmetic comparison over a data stream were
considered and an algorithm was presented for
determining whether or not a query can be evaluated
using a bounded amount of memory.

One of the simplest and natural approximation
techniques is Sliding Windows [9]. In this technique,
queries are evaluated using only recent data in the
time domain or using the number of readings. This
technique is well-defined and easily understood
which makes the semantics of the approximation
clear.

Random Samples [7, 10] are based on the
assumption that a small sample captures the essential
characteristics of the data set. The actual
computation for the random sample over a data
stream is relatively easy. In order to reduce error
from the variance in data and group-by queries,
stratified sampling has been proposed recently as an
alternative to uniform sampling. The reservoir
sampling algorithm of Vitter [11] makes one pass
over the data set and is well suited for the data
stream model.

Sketching Techniques use frequency moments
which capture the statistics of the distribution of the
values in the data stream [12]. Sketching involves
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building a summary of a data stream using a small
and limited amount of memory making it possible to
estimate the answer to certain queries over the data
set.

Histograms also find application in data stream
reduction. In fact, histograms are commonly used
summary structures to concisely capture the
distribution of values in a data set. Popular
histograms are V-Optimal Histograms [13] and
End-Biased Histograms.

Wavelets are often used as a technique to provide
a summary representation of the data. Wavelets’
coefficients are projections of the given signal (set of
data values) onto an orthogonal set of basis vectors.
Often Haar wavelets are used in databases for their
ease of computation. In [14], the use of wavelets
was proposed for general purpose approximate query
processing and how to compute joins, aggregations,
and selections was entirely demonstrated in the
wavelet coefficient domain.

It becomes important to devise techniques for
computing wavelets in the streaming model in order
to extend this body of work to data streams. There
has been recent work in computing the top wavelet
coefficients in the data stream model. The technique,
described in [15], to approximate the best dyadic
interval that most reduces the error, gives rise to an
easy greedy algorithm to find the best B-term Haar
wavelet representation. This work improves upon a
previous result by Gilbert, et al. [16].

Compressing Historical Information [17] is based
on the notion of the base signal which is constructed
and periodically updated from new data tuples. Here,
the main assumption is that the data stream has an
inherent real world property, namely, spatial/temporal
correlation.

Recently, a new notion of the probabilistic or
stochastic stream [18, 19, 20, 21] has appeared. The

main difference from the regular data stream is that
the probabilistic distribution law of data tuples is
assumed to be known or discoverable. Our
framework benefits from taking into account this
new sort of data streams as we demonstrate later. In
[19], an extension of a conventional relational model
called Probabilistic Stream Relational Algebra
(PSRA) was introduced to model existing
deterministic data stream models.

PCA is a useful statistical technique having
applications in many fields such as face recognition
and digital image compression [22]. In [23], we
already presented the motivation and basic algorithm
for the PCA-based data stream approximation. In this
paper, we describe our extensive experiments to
prove its effectiveness. Also, we consider data time
stamps to find their influence on the compression

ratio in terms of the relative approximation error.

3. FRAMEWORK DESCRIPTION

In this section, we describe some details about our
framework for implementing data reduction. Since
we assume that we work with a probabilistic data
stream and that the probabilistic characteristics of the
data stream are constant during a significant period
of time, we do not need to send the FeatureVector
with every data set from the base station to the
query processing engine. We can permanently store
this vector at the engine. In order to keep
information up-to-date, we can update it periodically.
All the assumptions we made for this work can be
found in [23]

3.1 ARCHITECTURE

The framework architecture is depicted in Figure
1. In the figure, sensor nodes proactively send
information in the direction of the base station. The

512 olEly Hwsls| (10243)

37



MM HIEQZE 9/8 PCA 7|t

ol AEE 24 7|4

[ = =

base station collects the stream in a sliding window
of size m and processes it by applying the PCA
algorithm. The query processing engine provides
error requirements to the base station and receives
back the reduced data.

. ) Base Station
. .-" PCA Processing

error
requirements

(Fig. 1) Framework architecture

reduced
data

3.2 PCA DATA REDUCTION

In our PCA-based general algorithm for data
reduction, the input parameters are required for
correct data processing: S is the Data Stream, € is
the error provided by the query processing engine,
and m is the sliding window size which represents
the maximum number of n-attribute tuples that can
be processed at the base station during one cycle.

In the algorithm, the first four lines deal with two
special cases: (i) when the application agrees to lose
all the data (¢ equals one), the base station sends
nothing to the query processing engine, and (ii)
when the application requires no data loss (¢ equals
zero), the base station returns the complete data set.
The lines 5-10 are for computing the FeatureVector.
The loop is responsible for the data reduction
restricted error correspondence. The function
ERROR in line 15 calculates the error between the
OriginalData and RestoredData. We discuss this
calculation in Section 3.4.

Algorithm PCA Data Reduction
input: S, ¢, m
if (¢ == 1) then
return
if ( € == 0) then
return S
OriginalData = S, Result = OriginalData
compute Mean matrix for OriginalData
DataAdjust = OriginalData - Mean
compute covariance matrix cov for DataAdjust

I AN A

2

calculate eigenvectors and eigenvalues matrices

(=

: obtain FeatureVector by sorting eigenvectors

11: for i = m down to 1

12: eliminate column # i from FeatureVector
13: calculate FinalData

14: calculate RestoredData

15: error = ERROR(OriginalData, RestoredData)
16: if (error < ¢ ) then

17: Result = FinalData

18: continue

19: else return  Result

3.3 TYPES OF DATA REDUCTION

In this section we consider a base station with
window size m X n (m tuples with n attributes) as
in Figure 2. We offer two different types of data
stream reductions; vertical reduction and horizontal
reduction. Later, we give a heuristic for their proper
selection.

Horizontal reduction is the data stream
compression eliminating complete data tuples. This
reduction means elimination of rows (horizontal
dimension) from the base station data set. Similarly,
we can work with the columns in the same way if
we imagine the table rotated 90 degrees and
implement a vertical reduction. Hence, vertical
reduction is complete elimination of attributes, or
columns (vertical dimension) from the base station
data set.
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Vertical Reduction Base Station

"* Horizontal Reduction

bm Crm1 Cmg Crn

(Fig. 2) Types of Data Reduction

In order to find out what kind of reduction is
more beneficial in any particular case, we propose a
simple heuristic: First we try to estimate how much
data we can delete using the vertical and the
horizontal reductions and based on this estimation,
we can choose a more profitable one. As we have
shown, we can eliminate the eigenvectors with the
smallest eigenvalues.

Suppose that u is the upper bound of the
eigenvalues we can delete from the FeatureVector. v
and h are the number of eigenvalues with a value
lower than y in the vertical and horizontal
dimensions, respectively. We can use vertical
reduction if v*m < h*n. Otherwise, we can use
horizontal reduction. The value of u is supposed to
be chosen experimentally.

3.4 ERROR EVALUATION METRICS

Error evaluation is one of the most important
parts of our framework because it has effects on the
proper data reduction and thus correct query
processing. As possible variants, we can consider
any existing error metrics such as sum squared error,
maximum error of the approximation, and relative
entropy because our method is not oriented toward a
specific error metric. Line 15 in the algorithm shows
that the procedure ERROR can be chosen
independently from other parts of the algorithm.

4. EXPERIMENTS

In this section, we describe our implementation of
the proposed algorithm and several experiments with
some real data sets. We have used Weather Data that
includes air temperature, dew point temperature,
atmosphere pressure, wind speed, and altitude
measurements for a station at the University of
Washington for the year 2007 [24]. As a second data
set, we have used Stock Data that consists of
information on trades that were performed daily in
the end of April of the year 2007 [25].

4.1 WEATHER / STOCK DATA EXPERIMENT

Figure 3 shows an illustration of the dependency
between the compression ratio and the relative
approximation error in the cases of horizontal (dotted
line) and vertical (dashed line) reductions for the
weather data. The results are stepwise functions
since we eliminated entire tuples (or attributes for
vertical reduction). The value of the steps depends
on the sliding window size m (or number of
attributes n). As you can see, in this particular case,
the vertical reduction is more beneficial than the
horizontal reduction over the entire error range.

T T
Vertical reduction— — —

T T
Compression ratia
] Horizontal reduction----------

emor |

T T T T T T T T T T T T
0000 0o 0002 0003 0004 0,005 0,005

(Fig. 3) Weather tuples approximation
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(Fig. 4) Stock tuples approximation

Figure 4 shows the dependency between the
compression ratio and the relative approximation
error in the cases of horizontal (dotted line) and
vertical (dashed line) reductions for the stock data.
The Stock Data window size was twice as small as
the Weather Data, while the number of attributes
was bigger by one unit. In the figure, you may
notice that in contrast to the Weather Data, there is
an error range where it is more profitable to use
horizontal reduction than vertical reduction. This
example clearly illustrates a situation where we can
select an appropriate reduction technique based on an
acceptable error value and a posteriori knowledge.

4.2 WAVELET EXPERIMENT

The purpose of this experiment is to compare
approximation properties of the PCA and wavelets.
We use the same weather and stock market data as
in the previous experiment. Also, we use the
Daubechies wavelet since it is the most commonly
used and the approximation error as error metric.

Figure 5 shows the original and restored stock
data after a wavelet approximation. Here, the solid
line indicates the original data; the dashed line
indicates the restored data. In the figure, the number
of used levels of wavelets is five. This is the
maximally correct approximation provided by these
sorts of wavelets. Obviously, the approximation is

not good even with the maximal number of wavelet
coefficients.

The PCA approximation, corresponding to the
maximally correct approximation provided by the
wavelets (with the same compression value of 50%),
is indicated in Figure 6. As in Figure 5, the solid
line indicates the original data and the dashed line
indicates the restored data.

Comparing Original/Restored Signals
610 T T T T T T

Error = 0.846466 L=5

Furn

(Fig. 5) Wavelet approximation (1, stock data)

Comparing Original/Restored Signals
™ T T
Error = 2.847 % 107° compressionratio 50%

- \
PCAData; I I ‘

e i

20’

0

(Fig. 6) PCA approximation (stock data)

The PCA approximation is so much better that the
plots overlap each other if they are drawn in the
same style. This is why we draw the PCA data by
using lines rather than in a step-function style. For
comparison, the same plot, but after wavelet
approximation, is depicted below in Figure 7.

, Comparing Original/Restored Signals
840 T T T

Error = 0.846466 L

1
w

410"

| e

210" - \ -

\
Voo Vo Vo
/I ! \
AAN AN AN AN A !
30 40 0

0 10 Eil a0

0

(Fig. 7) Wavelet approximation (2, stock data)
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Figure 8 shows the original and restored weather
data after wavelet approximation. Here, the solid line
indicates the original data and the dashed line
indicates the restored data. In the figure, the number
of used levels is six. This is the maximally correct
approximation provided by this sort of wavelets.

Comparing Original/ Restored Signals

nhnon
Error = 0.677996 L=6

1000

i —

AEE 22 |8
Comparing Original Restored Signals
mBE 0o hn b0 h 0w 0
Etror = 0.6778%6 L=6
x ’ | f j w
o smH H le M }Hl ;\ /L ,
il iy I
i f HH
| a4 : el
¥ /\(1/1f\/’f b /R’l/ b
s Wt S B W e L B
50

0

10

) 0

(Fig. 10) Wavelet approximation
(2, weather data)
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=
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(Fig. 8) Wavelet approximation (1, weather data)

The PCA approximation corresponding to the

maximally correct approximation provided by
wavelets (with the same compression value 50%) is
shown in Figure 9.

1000

ER

PCADaty g

0

Comparing Original/Restored Signals

[l T [nl

Error=3.28% 107
|

15

I n
compressionratio 50%

(Fig. 9) PCA approximation (weather data)

As in the case of stock data, a PCA approximation

As you can see, error values are extremely
different and much better for the PCA. Note that the
compression ratios for the both cases are 50%. The
compression ratios of the wavelet and the PCA
approximation for stock and weather data are shown
in Figures 11 and 12, respectively.
this, 1)
compression ratio provided by Daubechies wavelets
is limited to 50% while PCA potentially provides all
possible values from the entire range. PCA depends

From we conclude: the minimal

only on the sliding window and data stream
parameters such as the possible number of tuples
allowed for processing and the number of attributes.
(ii) PCA is much better than Daubechies wavelets in

respect to compression ratio and relative

approximation error. Although wavelet approximation
generates a bigger error than PCA, it provides a
compression ratio close to 100%.

1 T T
10] PCA ——- ]

09 ] Daubechies wavelets [ |

a8

07 A

is also much better. Again, the plots overlap each
other if they are drawn in the same style. For
comparison, the same plot, but after a wavelet
approximation, is depicted below in Figure 10.
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(Fg. 11) Compression ratios of PCA and Daubechies wavelets

(stock data)
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4.3 A TIME STAMP EXPERIMENT

In this experiment, we find how data time stamps
influence the compression ratio in terms of the
relative approximation error. Basically, we will
discover how our method handles a time correlation.
We use same weather and stock market data with
different time stamps and the relative approximation
error

For stock data we use four different data sets
created the first months of winter, spring, summer,
and fall 2007. We assume the first month of winter,
2007 is January. You may find horizontal and
vertical reductions for the stock data in Figure 13.

10 T T T T T T

—m—winter
—e—spring
084 —A—summer et -
fall s
° e
c 06 3
2
r
@
° o
g_ 044 e winter -
S 3 - spring
P - summer
024 4 —fall
00 J
' error

T T T T T T
0,00E+000 4,00E-009 800E-009 120E-006 160E-008 200E-008

(Fig. 13) Horizontal and vertical reductions
(stock)
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Compression ratio

-- winter
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"""" summer |
—fall

error |

0‘500 0‘()'02 O‘OIM O‘OIOB 0‘508 O‘E;‘\O 01]‘12
(Fig. 14) Horizontal and vertical reductions
(weather)

In the figure, the lines without symbols represent
vertical reduction, and the lines with symbols
represent horizontal reduction. As in our first
experiment for each of four time stamps, there is an
etror range where it is more profitable to use vertical
reduction than horizontal reduction. However, even
though vertical reduction for the spring period is
more preferable among the entire vertical reductions
of the experiment, its usability range is the shortest.
At the same time, even though horizontal reduction
for the winter period is worst, it has the longest
usability range for the vertical reduction.

For the weather data, we use four different data
sets created the first months of winter, spring,
summer, and fall 2007 as we use for the stock data.
In Figure 14, the lines without symbols represent
vertical reduction and the lines with symbols
represent horizontal reduction. For all the entire error
range, horizontal reduction operates better than
vertical reduction.

From the result, we conclude: (i) Stock data has a
pretty strong dependency between the compression
ratio and the time stamp while in the case of weather
data this dependence is not really sensible. (i) The
compression ratio for horizontal reduction is better
for all of the error range in the case of weather data
but this is not true for stock data. This difference
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proves that the proper selection between two
compression techniques is important for every data
set and depends on the data set’s internal properties.
(iii)) The degree of usability of one or another
reduction technique can depend on the time stamp.

5. CONCLUSION

In this paper, we presented a new PCA-based data
stream reduction scheme for sensor networks
assuming cooperation between a base station and a
query processing engine. We established two
different data reduction methods, horizontal and
vertical reductions, and proposed a technique for
selecting one between them. We tested our scheme
on two existing types of real data sets. The
simulation result demonstrated that our reduction
algorithm achieved a high data compression ratio
with a small relative approximation error. This
proved that our proposed framework is appropriate
for actual sensor network data processing and
applicable for real data sets.
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