• Title/Summary/Keyword: 스터럽

Search Result 59, Processing Time 0.028 seconds

A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure (흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Kim, Sang-Won;Seo, Yong-Chil;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

Shear Behavior of Web Element in PSC Beams Incorporated with Arch Action (아치작용을 고려한 PSC보의 복부전단거동)

  • Jeong, Je Pyong;Shin, Geun Ock;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • It is well known that axial tension decreases the shear strength of RC & PSC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear resistance capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the shear strength in web is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams by nonlinear FEM program (ATENA-2D).

Development and Application of Lattice Shear Reinforcement for Flat Plate Slab-column Connection (래티스를 이용한 철근콘크리트 무량판 구조의 슬래브-기둥 접합부 전단보강 공법 개발)

  • Kang, Su-Min;Park, Sung-Woo;Bang, Joong-Seok;Lee, Do-Bum;Kwon, Chul-Hwan;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.482-490
    • /
    • 2013
  • Although the flat plate system is an efficient structural type due to the simplicity of its construction, the low story height, and the various plan design, the slab-column connections are vulnerable to punching shear failure from gravity load and eccentric shear failure from lateral load. To prevent the structure collapse, various construction methods of slab-column connection reinforcement are developed but none of these satisfies all of structural performance, economics, and constructability. This paper presents the reinforcement of slab-column connection with lattice bars. The structural performance is confirmed with the interior slab-column connection tests subjected to cyclic loading, and the economic feasibility is demonstrated from the structural design under the same condition with lattice bars, stud rails, and stirrups.

A New Refined Truss Modeling for Shear-Critical RC Members (Pert II) - lts Verification - (전단이 지배하는RC 부재의 새로운 트러스 모델링 기법 연구 (후편) - 검증을 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Haeng-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.59-68
    • /
    • 2005
  • This paper as Part II of the present study deals with the verification of the new truss model that has been conceptually derived and formulated in Part I. Since the model includes the arch coefficient-$\alpha$, the characteristics of this coefficient are examined, and it appears that the coefficient-$\alpha$ is a function of a/d, $\rho$ and $\rho_v$ After transforming the model Into a sectional approach, the formula for predicting the stirrup stress, the longitudinal steel force, and ultimate shear strength are derived. Then, the equations are applied to the test specimens available in literatures, and the predicted values are shown to be in excellent agreement with the experimental results.

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

Prediction of Shear Strength of FRP Concrete Beams without Stirrups by Artificial Neural Networks (인공신경망에 의한 스터럽 없는 FRP 콘크리트 보의 전단강도 예측)

  • Lee, Cha-Don;Kim, Won-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.801-804
    • /
    • 2008
  • Fiber reinforced plastics (FRP) are light in weight, non-corrosive and exhibits high tensile strength. FRPs having superior material properties to corrosive steels have been widely replacing steel bars or tendons used in concrete structures as flexural reinforcements. Although current design guidelines for estimating shear strength of FRP concrete beam follow the format of conventional reinforced concrete design method, there are noticeable differences among the existing formulas in calculating the contributions of concrete to shear resistance. In this paper, the artificial neural network (ANN) technique is employed as an analytical alternative to existing methods for predicting shear capacity of FRP concrete beams. Influential factors on shear strength were identified through literature review and input in ANN and the ANN was trained for the target ultimate shear obtained from database. The results from ANN were compared with existing formulas for its accuracy. It was found that the developed ANN were more closely predicting the test data than those of the currently available predictive equations.

  • PDF

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.

Discrete Optimum Design of Reinforced Concrete Beams using Genetic Algorithm (유전알고리즘을 이용한 철근콘크리트보의 이산최적설계)

  • Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.259-269
    • /
    • 2005
  • This paper describes the application of genetic algorithm for the discrete optimum design of reinforced concrete continuous beams. The objective is to minimize the total cost of reinforced concrete beams including the costs of concrete, form work, main reinforcement and stirrup. The flexural and shear strength, deflection, crack, spacing of reinforcement, concrete cover, upper-lower bounds on main reinforcement, beam width-depth ratio and anchorage for main reinforcement are considered as the constraints. The width and effective depth of beam and steel area are taken as design variables, and those are selected among the discrete design space which is composed with dimensions and steel area being used from in practice. Optimum result obtained from GA is compared with other literature to verify the validity of GA. To show the applicability and efficiency of GA, it is applied to three and five span reinforced concrete beams satisfying with the Korean standard specifications.

Out-of-Plane Shear Strength Models of SC Wall (SC 벽체의 면외 전단강도 특성)

  • Hon, Sung-Gul;Lee, Kyuong-Jin;Park, Dong-Soo;Kim, Won-Ki;Lee, Dong-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.225-228
    • /
    • 2008
  • This paper presents out-of-plane shear strength models for composite wall with steel plates based on limit theorem in the framework of the plasticity theory. The formulas proposed by JEAG 4618 need to be reconsidered with a couple of limitations; ignoring the effect of bond stress generated by studs in the process of calculating arch action, illogically discriminating between concrete shear cracking strength and arch strength by algebraic relation in short shear span ratio(0-2.0). In most cases, reinforcement ratio is not sufficient to yield, as a result, arch strength is determined by accounting equilibrium including both bond strength and concrete compressive strength. We conducted experimental research assuming that SC wall is a continuous beam under the simplified loading patterns, changing main valuables involving the number of studs, stirrups. The results show good agreements with the formula and we quoted the test results of JEAG.

  • PDF