• Title/Summary/Keyword: 스퀼

Search Result 95, Processing Time 0.024 seconds

Brake Squeal Noise Due to Disk Run-out (디스크 런아웃에 기인한 브레이크 스퀼소음)

  • Lim, Jae-Hoon;Cho, Sung-Jin;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.595-600
    • /
    • 2004
  • This paper deals with a cause analysis of a squeal noise in a brake system. It has been proved that the squeal noise is influenced by the angular misalignment of a disk, disk run-out, with the previously experimental study. In this study, a cause of the noise is examined by using FE analysis program(SAMCEF) and numerical analyses with a derived analytical equation of the disk based on the experimental results. The FE analyses and numerical results show that the squeal noise is due to the disk run-out as the experimental results and the frequency component of the noise equals to that of a disk's bending mode arising from the Hopf bifurcation.

  • PDF

An analysis of the brake noise of a high-speed train(KTX) (고속전철(KTX)의 제동소음 특성 분석)

  • Choi, Sung-Hoon;Seo, Seung-Il;Choi, Kyung-Jin;Park, Choon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.861-864
    • /
    • 2005
  • Brake noise has been one of the most difficult concerns in the automotive industry. Although substantial research has been conducted to predict and eliminate brake noise, there is yet no method to completely suppress brake noise. Furthermore, little effort has been made to improve noise and vibration characteristics of the railway brake system. The amount of sound energy radiated from the railway brake system is much larger than that from the automobile, and it causes discomfort of passengers in the station. In this paper, noise and vibration caused by the braking force of the KTX vehicle have been measured and analysed. Results show that noise level increases abruptly right before a train comes to a complete stop. Furthermore, typical characteristics of the disk brake squeal have been observed.

  • PDF

Identification of Noise Characteristics for Subway Train Passing through the Underground Tunnel (터널통과 전동차 내외부 소음 특성 규명)

  • Cho, Jun-Ho;Lee, Kyu-Jin;Jung, Woo-Sung;Hong, Chull-Kee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.340-345
    • /
    • 2002
  • Passengers in automobile or train are exposed to a worse noise environment when they are in the tunnel than in the open field. This is due to a relatively higher space density of sound energy by multiple reflection phenomenon of noise generated by operation of transportation vehicles from tunnel wall compared to open field. In this study, noise characteristics of subway train running through a tunnel were investigated at straight/curved track and tunnel type(semi circular/box). Also the noise measured simultaneously at inner and outer sides of train running through a tunnel, so that the coherence of the various noise sources of subway train to inner noise was evaluated.

  • PDF

Mode Shape Variation of Disc Brake with Respect to Contact Stiffness Variation (마찰재 접촉강성에 따른 디스크 브레이크 진동모드 형상화)

  • Kang, Jae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Eigensolutions associated with self-excited vibration of disc brake system can be obtained by complex eigenvalue analysis. The eigenvalue sensitivity to change in contact stiffness can be used to demonstrate stability criteria and eigenvalue veering. Dynamic instability on eigenvalue loci with respect to the variation of contact stiffness is found to be related to mode interaction between two adjacent modes. This modal interaction can be effectively shown by mode shape visualization. This paper presents the methodology to construct the mode shape of disc brake system where a disc and two brake pads are coupled with contact stiffness.

Effect of Blade Tip Geometry on Heat Transfer Coefficients on Gas Turbine Blade Tips and Near Tip Regions (가스터빈 블레이드 끝단 형상에 따른 블레이드 끝단 및 그 주변에서의 열전달 계수 변화)

  • Kwak Jae-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.328-336
    • /
    • 2006
  • Detailed heat transfer coefficient distributions an two. types of gas turbine blade tip, plane tip and squealer tip, were measured using a hue-detection base transient liquid crystals technique.. The heat transfer coefficients an the shroud and near tip regions of the pressure and suction sides af the blade were also. measured. The heat transfer measurements were taken at the three different tip gap clearances af 1.0%, 1.5%, and 2.5% of blade span. Results shaw the overall heat transfer coefficients on the tip and shroud with squealer tip blade were lower than those with plane tip blade. By using squealer tip, however, the reductions af heat transfer coefficients near the tip regions of the pressure and suction sides were nat remarkable.

A Study on the Squeal Noise generated by Self-excited Vibration in Friction surface (마찰면에서 자여 진동에 의해 발생되는 스퀼 소음에 관한 연구)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.90-96
    • /
    • 1998
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assemble etc. Also, the squeal noise changes its inherent form(i.e. its sound pressure level and its frequency) with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibrationand squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.601-606
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

  • PDF

Numerical Study of Film Cooling Characteristics in Turbine Blade Cavity (터빈 블레이드 캐버티 내 막냉각 특성에 관한 수치해석적 연구)

  • Kim, Kyung-Seok;Cho, Hyung-Hee;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.648-651
    • /
    • 2008
  • Numerical calculations are performed to simulate the film cooling effect of turbine blade tip with squealer rim. Because of high temperature of inside rim, squealer rim is damaged easily. Therefore many various cooling systems were used. The calculations are based on 100,000 Reynolds number in linear cascade model. A blade has 2% tip clearance and 8.4% rim height. The axial chord length and turning angle is 237mm, 126$^{\circ}$. Numerical calculations are performed without and with film cooling. In a film cooling in the cavity, hot spots of cavity were cooled effectively. However hot spots of suction side rim still remains. The CFD results show that the circulation flow in cavity of squealer tip affects the temperature rise of squealer rim. To maintain the blade integrity and avoid the excessive hot spot of blade, rearrangement of cooling hole is needed.

  • PDF

Brake Squeal Analysis with Respect to Caliper Contact Stiffness (캘리퍼 접촉강성을 고려한 브레이크 스퀼 해석)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.717-724
    • /
    • 2013
  • The present study provides the numerical results in association with caliper stiffness and friction curve. From the numerical results, it is concluded that the pad vibration modes with dominant displacement in rotation direction is sensitive in the flutter instability. Particularly, the pad rigid mode is shown to become the squeal mode when the caliper stiffness is introduced in brake squeal model. Therefore, the caliper contact stiffness between the pad and caliper is expected to contribute to the squeal modes of the brake pad.

An Experimental Study on the Squeal Noise Generated in Friction Surface of Disk Brake (디스크 브레이크의 마찰면에서 발생되는 스퀼소음에 관한 실험적 연구)

  • 이해철;이원평;차경옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.26-31
    • /
    • 2000
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assembly etc. Also, the squeal noise changes its inherent form with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibration and squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF