• Title/Summary/Keyword: 스칼라 곱셈

Search Result 65, Processing Time 0.024 seconds

An Improved Scalar Multiplication on Elliptic Curves over Optimal Extension Fields (최적확장체에서 정의되는 타원곡선 상에서 효율적인 스칼라 곱셈 알고리즘)

  • 정병천;이재원;홍성민;김환준;김영수;황인호;윤현수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.593-595
    • /
    • 2000
  • 본 논문에서는 최적확장체(Optimal Extension Field; OEF)에서 정의되는 타원곡선 상에서 효율적인 스칼라 곱셈 알고리즘을 제안한다. 이 스칼라 곱셈 알고리즘은 프로비니어스 사상(Frobenius map)을 이용하여 스칼라 값을 Horner의 방법으로 Base-Ф 전개하고, 이 전개된 수식을 일괄처리 기법(batch-processing technique)을 사용하여 연산한다. 이 알고리즘을 적용할 경우, Kobayashi 등이 제안한 스칼라 곱셈 알고리즘보다 40% 정도의 성능향상을 보인다.

  • PDF

A GF(2163) scalar multiplier for elliptic curve cryptography (타원곡선 암호를 위한 GF(2163) 스칼라 곱셈기)

  • Jeong, Sang-Hyeok;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.686-689
    • /
    • 2009
  • This paper describes a scalar multiplier for Elliptic curve cryptography. The scalar multiplier has 163-bits key size which supports the specifications of smart card standard. To reduce the computational complexity of scalar multiplication on finite field $GF(2^{163})$, the Non-Adjacent-Format (NAF) conversion algorithm based on complementary recoding is adopted. The scalar multiplier core synthesized with a $0.35-{\mu}m$ CMOS cell library has 32,768 gates and can operate up to 150-MHz@3.3-V. It can be used in hardware design of Elliptic curve cryptography processor for smart card security.

  • PDF

Elliptic Curve Scalar Point Multiplication Using Radix-4 Modified Booth's Algorithm (Radix-4 Modified Booth's 알고리즘을 응용한 타원곡선 스칼라 곱셈)

  • 문상국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1212-1217
    • /
    • 2004
  • The main back-bone operation in elliptic curve cryptosystems is scalar point multiplication. The most frequently used method implementing the scalar point multiplication, which is performed in the upper level of GF multiplication and GF division, has been the double-and-add algorithm, which is recently challenged by NAF(Non-Adjacent Format) algorithm. In this paper, we propose a more efficient and novel scalar multiplication method than existing double-and-add by applying redundant receding which originates from radix-4 Booth's algorithm. After deriving the novel quad-and-add algorithm, we created a new operation, named point quadruple, and verified with real application calculation to utilize it. Derived numerical expressions were verified using both C programs and HDL (Hardware Description Language) in real applications. Proposed method of elliptic curve scalar point multiplication can be utilized in many elliptic curve security applications for handling efficient and fast calculations.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

A GF($2^{163}$) Scalar Multiplier for Elliptic Curve Cryptography for Smartcard Security (스마트카드 보안용 타원곡선 암호를 위한 GF($2^{163}$) 스칼라 곱셈기)

  • Jeong, Sang-Hyeok;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2154-2162
    • /
    • 2009
  • This paper describes a scalar multiplier for Elliptic curve cryptography for smart card security. The scaler multiplier has 163-bits key size which supports the specifications of smart card standard. To reduce the computational complexity of scala multiplication on finite field, the non-adjacent format (NAF) conversion algorithm which is based on complementary recoding is adopted. The scalar multiplier core synthesized with a 0.35-${\mu}m$ CMOS cell library has 32,768 gates and can operate up to 150-MHz@3.3-V. It can be used in hardware design of Elliptic curve cryptography processor for smartcard security.

Randomization of Elliptic Curve Secret Key to Efficiently Resist Power Analysis (전력분석공격을 효율적으로 방어하는 타원곡선 비밀키의 랜덤화)

  • 장상운;정석원;박영호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.169-177
    • /
    • 2003
  • We establish the security requirements and derive a generic condition of elliptic curve scalar multiplication to resist against DPA and Goubin’s attack. Also we show that if a scalar multiplication algorithm satisfies our generic condition, then both attacks are infeasible. Showing that the randomized signed scalar multiplication using Ha-Moon's receding algorithm satisfies the generic condition, we recommend the randomized signed scalar multiplication using Ha-Moon's receding algorithm to be protective against both attacks. Also we newly design a random recoding method to Prevent two attacks. Finally, in efficiency comparison, it is shown that the recommended method is a bit faster than Izu-Takagi’s method which uses Montgomery-ladder without computing y-coordinate combined with randomized projective coordinates and base point blinding or isogeny method. Moreover. Izu-Takagi’s method uses additional storage, but it is not the case of ours.

An Efficient Hardware Implementation of 257-bit Point Scalar Multiplication for Binary Edwards Curves Cryptography (이진 에드워즈 곡선 공개키 암호를 위한 257-비트 점 스칼라 곱셈의 효율적인 하드웨어 구현)

  • Kim, Min-Ju;Jeong, Young-su;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.246-248
    • /
    • 2022
  • Binary Edwards curves (BEdC), a new form of elliptic curves proposed by Bernstein, satisfy the complete addition law without exceptions. This paper describes an efficient hardware implementation of point scalar multiplication on BEdC using projective coordinates. Modified Montgomery ladder algorithm was adopted for point scalar multiplication, and binary field arithmetic operations were implemented using 257-bit binary adder, 257-bit binary squarer, and 32-bit binary multiplier. The hardware operation of the BEdC crypto-core was verified using Zynq UltraScale+ MPSoC device. It takes 521,535 clock cycles to compute point scalar multiplication.

  • PDF

Enhanced Security of Flexible Elliptic Curve Cryptosystems using Signed Hamming Weights (부호화 해밍 웨이트를 이용한 가변 타원곡선 암호시스템의 안전성 향상)

  • Lee, Mun-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.588-592
    • /
    • 2004
  • Scalar multiplication is to compute $textsc{k}$P when an integer $textsc{k}$ and an elliptic curve point f are given. As a general method to accelerate scalar multiplication, Agnew, Mullin and Vanstone proposed to use $textsc{k}$'s with fixed Hamming weights. We suggest a new method that uses $textsc{k}$'s with fixed signed Hamming weights and show that this method is more secure.

224-bit ECC Processor supporting the NIST P-224 elliptic curve (NIST P-224 타원곡선을 지원하는 224-비트 ECC 프로세서)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.188-190
    • /
    • 2017
  • 투영(projective) 좌표계를 이용한 스칼라 곱셈(scalar multiplication) 연산을 지원하는 224-비트 타원곡선 암호(Elliptic Curve Cryptography; ECC) 프로세서의 설계에 대해 기술한다. 소수체 GF(p)상의 덧셈, 뺄셈, 곱셈 등의 유한체 연산을 지원하며, 연산량과 하드웨어 자원소모가 큰 나눗셈 연산을 제거함으로써 하드웨어 복잡도를 감소시켰다. 수정된 Montgomery ladder 알고리듬을 이용하여 스칼라 곱셈 연산을 제어하였으며, 단순 전력분석에 보다 안전하다. 스칼라 곱셈 연산은 최대 2,615,201 클록 사이클이 소요된다. 설계된 ECC-P224 프로세서는 Xilinx ISim을 이용한 기능검증을 하였다. Xilinx Virtex5 FPGA 디바이스 합성결과 7,078 슬라이스로 구현되었으며, 최대 79 MHz에서 동작하였다.

  • PDF

An Area-efficient Design of ECC Processor Supporting Multiple Elliptic Curves over GF(p) and GF(2m) (GF(p)와 GF(2m) 상의 다중 타원곡선을 지원하는 면적 효율적인 ECC 프로세서 설계)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.254-256
    • /
    • 2019
  • 소수체 GF(p)와 이진체 $GF(2^m)$ 상의 다중 타원곡선을 지원하는 듀얼 필드 ECC (DF-ECC) 프로세서를 설계하였다. DF-ECC 프로세서의 저면적 설와 다양한 타원곡선의 지원이 가능하도록 워드 기반 몽고메리 곱셈 알고리듬을 적용한 유한체 곱셈기를 저면적으로 설계하였으며, 페르마의 소정리(Fermat's little theorem)를 유한체 곱셈기에 적용하여 유한체 나눗셈을 구현하였다. 설계된 DF-ECC 프로세서는 스칼라 곱셈과 점 연산, 그리고 모듈러 연산 기능을 가져 다양한 공개키 암호 프로토콜에 응용이 가능하며, 유한체 및 모듈러 연산에 적용되는 파라미터를 내부 연산으로 생성하여 다양한 표준의 타원곡선을 지원하도록 하였다. 설계된 DF-ECC는 FPGA 구현을 하드웨어 동작을 검증하였으며, 0.18-um CMOS 셀 라이브러리로 합성한 결과 22,262 GEs (gate equivalences)와 11 kbit RAM으로 구현되었으며, 최대 100 MHz의 동작 주파수를 갖는다. 설계된 DF-ECC 프로세서의 연산성능은 B-163 Koblitz 타원곡선의 경우 스칼라 곱셈 연산에 885,044 클록 사이클이 소요되며, B-571 슈도랜덤 타원곡선의 스칼라 곱셈에는 25,040,625 사이클이 소요된다.

  • PDF