• Title/Summary/Keyword: 스윙펌프

Search Result 4, Processing Time 0.019 seconds

CFD Simulation on the Oil Pumping System of a Variable Speed Scroll Compressor with a Swing Pump (스윙펌프를 내장한 가변속 스크롤 압축기의 오일공급시스템에 관한 CFD 시뮬레이션)

  • 조홍현;김용찬;유병길
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.50-58
    • /
    • 2003
  • An analytical study was carried out to investigate the performance of an oil pumping system of a variable speed compressor using a commercial CFD program. The simulations for the oil supplying system with the oil and air mixture were performed by varying compressor speed from 40 Hz to 90 Hz. Comparing the predicted with the measured data on the modified scroll compressor validated the simulation model. The predicted results were consistent with the test data with a maximum deviation of 12.8%. The oil flow rate significantly increased with a rise of compressor speed due to a higher oil flow rate from the swing pump and a greater centrifugal force on oil gallery.

A DC-DC Converter Design with Internal Capacitor for TFT-LCD Driver IC (TFT -LCD 구동 IC용 커패시터 내장형 DC-DC 변환기 설계)

  • Lim Gyu-Ho;Kang Hyung-Geun;Lee Jae-Hyung;Sohn Ki-Sung;Cho Ki-Seok;Baek Seung-Myun;Sung Kwan-Young;Li Long-Zhen;Park Mu-Hun;Ha Pan-Bong;Kim Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1266-1274
    • /
    • 2006
  • A non-overlap boosted-clock charge pump(NBCCP) with internal pumping capacitor, an advantageous circuit from a minimizing point of TFT-LCD driver IC module, is proposed in this paper. By using the non-overlap boosted-clock swinging in 2VDC voltage, the number of pumping stages is reduced to half and a back current of pumping charge from charge pumping node to input stage is also prevented compared with conventional cross-coupled charge pump with internal pumping capacitor. As a result, pumping current of the proposed NBCCP circuit is increased more than conventional cross-coupled charge pump, and a layout area is decreased. A proposed DC-DC converter for TFT-LCD driver IC is designed with $0.18{\mu}m$ triple-well CMOS process and a test chip is in the marking.

Design of Low-Area DC-DC Converter for 1.5V 256kb eFlash Memory IPs (1.5V 256kb eFlash 메모리 IP용 저면적 DC-DC Converter 설계)

  • Kim, YoungHee;Jin, HongZhou;Ha, PanBong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2022
  • In this paper, a 1.5V 256kb eFlash memory IP with low area DC-DC converter is designed for battery application. Therefore, in this paper, 5V NMOS precharging transistor is used instead of cross-coupled 5V NMOS transistor, which is a circuit that precharges the voltage of the pumping node to VIN voltage in the unit charge pump circuit for the design of a low-area DC-DC converter. A 5V cross-coupled PMOS transistor is used as a transistor that transfers the boosted voltage to the VOUT node. In addition, the gate node of the 5V NMOS precharging transistor is made to swing between VIN voltage and VIN+VDD voltage using a boost-clock generator. Furthermore, to swing the clock signal, which is one node of the pumping capacitor, to full VDD during a small ring oscillation period in the multi-stage charge pump circuit, a local inverter is added to each unit charge pump circuit. And when exiting from erase mode and program mode and staying at stand-by state, HV NMOS transistor is used to precharge to VDD voltage instead of using a circuit that precharges the boosted voltage to VDD voltage. Since the proposed circuit is applied to the DC-DC converter circuit, the layout area of the 256kb eFLASH memory IP is reduced by about 6.5% compared to the case of using the conventional DC-DC converter circuit.

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.