• Title/Summary/Keyword: 스위칭함수

Search Result 116, Processing Time 0.026 seconds

DCT/DFT Hybrid Architecture Algorithm Via Recursive Factorization (순환 행렬 분해에 의한 DCT/DFT 하이브리드 구조 알고리듬)

  • Park, Dae-Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.106-112
    • /
    • 2007
  • This paper proposes a hybrid architecture algorithm for fast computation of DCT and DFT via recursive factorization. Recursive factorization of DCT-II and DFT transform matrix leads to a similar architectural structure so that common architectural base may be used by simply adding a switching device. Linking between two transforms was derived based on matrix recursion formula. Hybrid acrchitectural design for DCT and DFT matrix decomposition were derived using the generation matrix and the trigonometric identities and relations. Data flow diagram for high-speed architecture of Cooley-Tukey type was drawn to accommodate DCT/DFT hybrid architecture. From this data flow diagram computational complexity is comparable to that of the fast DCT algorithms for moderate size of N. Further investigation is needed for multi-mode operation use of FFT architecture in other orthogonal transform computation.

  • PDF

The Position Control of Induction Motor using Reaching Mode Controller and Neural Networks (리칭모드 제어기와 신경 회로망을 이용한 유도전동기의 위치제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.72-83
    • /
    • 2000
  • This paper presents the implementation of the position control system for 3 phase induction motor using reaching mode controller and neural networks. The reaching mode controller is used to bring the position error and speed error trajectories toward the sliding surface and to train neural networks at the first time. The structure of the reaching mode controller consists of the switch function of sliding surface. And feedforward neural networks approximates the equivalent control input using the reference speed and reference position and actual speed and actual position measured form an encoder and, are tuned on-line. The reaching mode controller and neural networks are applied to the position control system for 3 phase induction motor and, are compared with a PI controller through computer simulation and experiment respectively. The results are illustrated that the output of reaching mode controller is decreased and feedforward neural networks take charge of the main part for the control action, and the proposed controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

  • PDF

Switch Design of TM Type SIDO DC-DC Buck Converter for Camera Module (카메라 모듈용 TM 방식 SIDO DC-DC 벅 컨버터의 스위치 설계)

  • Choi, Hun;Lee, Dong-Keon;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, a switch sizing method is proposed in order to prevent the cross-regulation in the TM type SIDO DC-DC buck converter. In TM type SIDO DC-DC buck converter, a DCM operation is required. In the DCM operation, the inductor peak current is larger than that in the CCM. Because of the larger inductor peak current and the added switch resistance, the voltage drop is increased, resulting in possible cross-regulation. To solve this problem, the switch resistance must be considered in sizing the switch. To simplify the calculation of the resistance, the inductor current was replaced by the average load current. Using the proposed method, TM type SIDO DC-DC buck converter for camera module was designed to provide two independent supply voltage(2.8 V and 1.8 V). The designed circuit was fabricated in a standard $0.35{\mu}m$ CMOS process. At a switching frequency of 1 MHz and a load current of 200 mA, a power effciency of 80.7% was achieved.

Relation of Threshold Voltage and Scaling Theory for Double Gate MOSFET (DGMOSFET의 문턱전압과 스켈링 이론의 관계)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.982-988
    • /
    • 2012
  • This paper has presented the relation of scaling theory and threshold voltage of double gate(DG) MOSFET. In the case of conventional MOSFET, current and switching frequency have been analyzed based on scaling theory. To observe the possibility of application of scaling theory for threshold voltage of DGMOSFET, the change of threshold voltage has been observed and analyzed according to scaling theory. The analytical potential distribution of Poisson equation has been used, and this model has been already verified. To solve Poisson equation, charge distribution such as Gaussian function has been used. As a result, it has been observed that threshold voltage is grealty changed according to scaling factor and change rate of threshold voltages is traced for scaling of doping concentration in channel. This paper has explained for the best modified scaling theory reflected the influence of two gates as using weighting factor when scaling theory has been applied for channel length and channel thickness.

Robust Control of Permanent Magnet Synchronous Motor Using Disturbance Observer and Sliding Mode Controller (외란관측기와 슬라이딩 모드 제어기를 이용한 영구자석 동기전동기의 강인제어)

  • Lee, Youn-kyu;Ahn, Ho-gyun;Yoon, Tae-sung;Kwak, Gun-pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1660-1670
    • /
    • 2015
  • Many robust controllers have been studied but most are considered in the theoretical point of view and can be used for only specific systems. So, in this paper, a more practical robust controller is proposed based on SMC(sliding mode control) and disturbance observer. The integral sliding mode is used to eliminate the reaching phase and minimizes the steady-state error, and the disturbance observer reduces the chattering due to the switching input for the bounded disturbances. The inevitable chattering of SMC is also removed by replacing the sign function with dead-zone function. The proposed controller has the improved steady-state error and robustness compared to PID controller.

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.231-238
    • /
    • 2023
  • For boost PFC (Power Factor Correction) converters, various control methods are being studied to achieve unity power factor and low THD (Total Harmonic Distortion) of AC input current. Among them, average current mode control, which controls the average value of the inductor current to follow the current reference, is the most widely used. However, nowadays, as advanced digital control becomes possible with the development of digital processors, predictive control of boost PFC converters is receiving attention. Predictive control is classified into predictive current mode control, which generates duty in advance using a predictive algorithm, and model predictive current control, which performs switching operations by selecting a cost function based on a model. Therefore, this paper simply explains the average current mode control, predictive current mode control, and model predictive current control of the boost PFC converter. In addition, current control under entire load and disturbance conditions is compared and analyzed through simulation.