• Title/Summary/Keyword: 스월형 분사기

Search Result 14, Processing Time 0.03 seconds

Modeling of Breakup and Spray of Co-axial Swirl Injector's Outer Orifice Installed LRE combustor (액체로켓엔진에 장착되는 동축 스월형 분사기의 외측 오리피스에서의 분무 및 분열 모사)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-190
    • /
    • 2006
  • This study was performed to investigate the characteristics of a co-axial swirl injector. Especially to predict the initial liquid sheet thickness and spray cone angle of an outer orifice a concept of effective area was introduced from hydraulic analysis. In addition, the parameters determining the characteristics of a co-axial swirl injector were re-defined around outer orifice. The calculated results-SMD, spray cone angle, and spray thickness agreed well with the test results qualitatively.

  • PDF

A Numerical Study of the Spray Characteristics of Co-axial Swirl Injector in Liquid Propellant Rocket Engine (액체로켓엔진에서 동축 스월형 분사기의 분무특성에 대한 수치적 고찰)

  • Moon Yoon-Wan;Seol Woo-Seok;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.156-160
    • /
    • 2006
  • This study investigated the characteristics of spray generated by a liquid-liquid co-axial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis[1] was introduced In liquid sheet breakup and Post[2]'s collision model which considers shattering was adopted on the collision model after breakup. Every model was implemented to KIVA[3], which was adopted as solve. To validate the implemented models the cases of high and low injection velocity were calculated respectively and each result agreed well with test results.

  • PDF

A Study of Collision Model in Coaxial Swirl Injector (동축 스월형 분사기에서 충돌 모델 연구)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.320-323
    • /
    • 2008
  • In this study the effect of collision model was evaluated in spray field by CFD. A collision is basically the interaction between droplets and criteria of collision is determined by drop Weber number, impact parameter, and drop-size ratio. Early developed collision model considered coalescence and grazing collision with the exchange of momentum. However in experimental research there were bouncing, coalescence, reflexive separating and stretching separating in interaction between droplets. In this study the collision considering such complex phenomena is modeled and was compared with the basic collision model.

  • PDF

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

A Study on In-cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상에 관한 연구)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.362-374
    • /
    • 2002
  • For the purpose of development of a GDI engine, the in-cylinder phenomena, such as the spray behaviors, fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used far the measurements of fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the in-cylinder phenomena were investigated. As a result, it was found that the injected fuel collided with the bottom of the bowl and moved upward along the exhaust side wall of piston bowl. This fuel vapor played an important role in the instance of spark ignition. The unburned fuel and flame characteristics were greatly influenced by the injector specifications.

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

Measurement of Spray Distribution of Swirl Injector by Tomography Method at High Pressure Condition (토모그래피 기법을 이용한 고압 조건에서의 스월 분사기의 분무 분포 계측)

  • Park, Gu-Jeong;Cho, Seong-Ho;Chung, Jae-Mook;Kim, Tae-Sung;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-71
    • /
    • 2011
  • The spray distribution at high pressure condition was measured by the Tomography method. The constructed spray distribution was compared with the images by Indirect Photography method so that the spray size confirmed and took the boundary of the distribution. It confirmed that the Tomography applies to construct the distribution at high pressure.

Numerical Analysis for Characteristics of Coaxial Swirl Injector in High-Pressure Environment (고압환경에서 동축 스월 분사기 분무 특성에 대한 수치적 해석)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Kim, Dong-Jun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.131-134
    • /
    • 2007
  • This numerical analysis was performed in order to validate adoption of the sheet breakup model in high-pressure environment, which were used for prediction of spray characteristics in atmosphere environment. In experiments the higher environment pressure the shorter breakup length; the results of new sheet breakup model predicted the breakup length in good agreement with experimental results qualitatively and quantitatively. Also the shape of spray calculated by numerical analysis were agreed well with experiments quantitatively.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors (다종의 동축 스월형 단일 분사기 연소 특성에 관한 실험적 연구)

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.85-94
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principal design parameters. a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

In-Cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.75-90
    • /
    • 2001
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the in-cylinder phenomena, such as the spray behaviors and fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurements of the fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the fuel distributions and combustion characteristics were investigated. As a result, it was found that the injected fuel spray collided with the bottom of the bowl and moved upward along the exhaust side wall of the piston bowl. This fuel vapor played a important role in the instance of spark ignition. The injector specifications has a great influence on the flame characteristics.

  • PDF