• Title/Summary/Keyword: 스마트 작동기

Search Result 53, Processing Time 0.055 seconds

Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators (압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화)

  • 송명관;한인선;김선훈;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.183-195
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free nitration control for the beam structures with bonded plate-tyPe Piezoelectric sensors and actuators is proposed.

시간지연추정 슬라이딩모드제어기와 형상기억합금 작동기를 위한 적용

  • 이효직;이정주;김종호;이정일;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.172-172
    • /
    • 2004
  • 형상기억합금 작동기는 스마트 작동기의 대표주자로서 부피 대비 발생력이 다른 어느 재료보다 우수하고, 모터와 같은 작동소음이 발생하지 않으며, 온도변화에 의한 간단한 작동원리로 근래에 많은 연구자들의 관심을 받아왔다 그러나, 온도변화 대 변위 곡선을 살펴보게 되면 이력곡선, 포화현상 등의 강한 비선형성을 내제하고 있고, 대류조건에 따른 온도외란에 민감하다. 이로 말미암아 정밀한 위치제어에 상당한 문제를 수반하고 있으며, 기존의 PID제어기나, 모델기저 제어기를 사용하게 될 경우 정상 상태오차와 한계싸이클 등의 현상이 나타나는 것으로 문헌에 보고되고 있다.(중략)

  • PDF

Reduction of Free Edge Peeling Stress in Composite Laminates under Bending Load (굽힘하중이 가해지는 복합재 평판 자유단에서의 박리응력 감소 연구)

  • Jung, Seok-Joo;Sung, Myung-Kyun;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.497-502
    • /
    • 2015
  • In this paper, a stress function-based approach was proposed to analyze the reduction of free-edge peeling stress in smart composite laminates using piezoelectric actuator under bending load. Electro-mechanically coupled governing equation was obtained by complimentary virtual work principle. The stress state was solved by the generalized eigenvalue procedure. The free-edge peeling stress of smart composite laminates was reduced by the piezoelectric actuation. The reduction rate of peeling stress in cross-ply composite laminate is larger than that in angle ply composite laminate.

Shape Recovery Analyses of SMA Actuator-Activated Composite Shells Considering 3-D SMA Material Behaviors (3차원 거동이 고려된 형상기억합금 작동기 부착 복합재 쉘의 변형해석)

  • Kim, Cheol;Lee, Seong Hwan;Jo, Maeng Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.44-52
    • /
    • 2003
  • Shape memory alloys (SMA) are often used in smart structures as active components. Their ability to provide large recovery forces and displacements has been useful in many applications, including devices for artificial muscles, active structural acoustic control, and shape control. Based on the 3-dimensional SMA constitutive equation in this paper, the radial displacement control of externally pressurized circular and semicircular composite cylinders under external pressure with a thin SMA layer bonded on its inner surface or inserted between composite layers in investigated using 3-dimensional finite element analysis. Upon actuation through resistive heating, SMAs start to transform from martensitic into austenitic state, simultaneously recover the prestrain, and thus cause the composite cylinders to go back to their original shapes of the cylinder cross-sections.

Robust Tracking Control of Smart Flexible Structures Featuring Piezofilm Actuators (압전필름 작동기로 구성된 스마트 유연 구조물의 강건추적제어)

  • Lee, Chul-Hee;Choei-Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1498-1507
    • /
    • 1996
  • This paper presents a robust control of a smart flexible structure featured by a piezofilm actuator characterizing its light weght and quick response time. A mathematical governing equation for the proposed structure is derived by employing Hamilton's principle and a state space control model is subsequentrly obtained through modal analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theroy thich has inherent robustness to systme uncertainties is adopted to design a tracking controller for the peizofilm actuator. Using the output informaiton from the tip deflection sensor, a full-order observer is constructed ot estimate state variables for the system. Tracking performances for desired trajectories of sinusoidal amd step functions are evaluated by undertaking both simulation and experimental works.

Design of Morphing Airfoil Using Shape Memory Alloy Actuator (형상기억합금 작동기를 이용한 모핑 에어포일 설계)

  • Noh, Mi-Rae;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.562-567
    • /
    • 2016
  • Morphing wing which has a configuration optimized to flight speed and condition is faced to a lot of barriers to be overcome such as actuator technique, structural mechanization technique, flexible skin material, control law, and so on. As the first step for developing a morphing wing with rapid response, we designed and fabricated the morphing airfoil using a SMA(shape memory alloy) wire actuator and torsional bias springs. The design concept of the morphing airfoil was verified through operation test. The measured results show that the flap deflects smoothly and fast.

Ground Test of Smart UAV Propulsion System (스마트무인기 추진장치 지상시험)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.533-536
    • /
    • 2009
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the rotational speed of proprotor. In this paper, the engine status data from ground test of Smart UAV, such as the relationship of PLA vs. Gas generator speed and power are compared with the result of engine performance calculation program.

  • PDF

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

Smart Clothes Management System Using My Own Fabric Perfume (나만의 섬유향수를 활용한 스마트 의류 관리기)

  • Lee, Yeon-Jin;Kim, Hwi-Jin;Park, Hyeon-Ho;Oh, Young-Ju;Baek, Chae-Yeong;Kim, In-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1063-1066
    • /
    • 2021
  • 본 논문은 개인의 니즈를 반영하기 위해 기존의 의류 관리기에 원하는 향을 입히는 기능을 추가한 스마트 의류 관리기를 제안한다. 의류 관리기는 시간 단축과 의류 상태 보존을 위해 세탁기 대용으로서 이용되는데 기존의 의류 관리기의 경우 먼지와 악취 제거만을 중점적으로 수행한다. 이에 본 논문에서는 개인의 취향에 맞는 향 제조를 도울 뿐만이 아니라 날씨, 계절, 그리고 사용자의 기분을 반영하여 향을 추천해준다. 애플리케이션에서는 작동 시간과 의류 및 작동 상태, 향 순위 등의 정보를 제공하여 제품의 효율성과 사용자의 편의성을 증가시킨다. 또한, openCV와 만족도 평가를 이용하여 사용자에게 알맞은 향기, 분사량을 찾을 수 있도록 피드백 과정을 거치게 된다. 이를 통해 본 논문은 개인에게 초점이 맞춰진 맞춤형 시장의 활성화 및 사용자의 편의성 증대를 목표로 한다.