• Title/Summary/Keyword: 스마트 무인기

Search Result 126, Processing Time 0.028 seconds

Attitude SCAS Design for 40% Scaled Smart UAV (40% 축소형 스마트 무인기 비행제어기 설계)

  • Lee, Jang-Ho;Hwang, Tai-Won;Choi, Ji-Young;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The control design for attitude and yaw rate of 40 % scaled SMART UA Vhas been performed. Analytic selection method for a control gain is proposed to meet the design specification of desired time response considering stability margin. The sliding mode attitude controller is also proposed and compared with the simulation results of a linear controller. Additionally, a velocity and height tracking controller is devised to prepar for the flight test.

  • PDF

Loads Analysis of Smart UAV Using ARGON (ARGON을 이용한 스마트 무인기 비행하중해석)

  • Shin, Jeong-Woo;Kim, Sung-Chan;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.76-84
    • /
    • 2005
  • For flight loads analysis of Smart UAV, applicable regulations and loads conditions should be prepared in advance, and modeling for aerodynamics, weight, and structure should be performed. Panel method is usually adopted for aircraft loads analysis to obtain aerodynamic loads. In this study, ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by KARI and TsAGI was used for loads analysis. ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis of Smart UAV which is a FAR 23 category airplane was performed with ARGON and the results were presented.

A Study on Fault Detection of Main Component for Smart UAV Propulsion system (스마트 무인기 추진시스템의 주요 구성품 손상 탐지에 관한 연구)

  • Kong, Chang-Duk;Kim, Ju-Il;Ki, Ja-Young;Kho, Seong-Hee;Choe, In-Soo;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). The measurement parameters of Smart UAV propulsion system are gas generator rotational speed, power turbine rotational speed, exhaust gas temperature and torque. But two measurement such as compressor exit pressure and compressor turbine exit temperature were added because they were difficult each component diagnostics using the default measurement parameter. The performance parameters for the estimate of component performance degradation degree are flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network learning and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

Reliability Analysis on Fuel System for the Smart UAV (스마트 무인기 연료공급시스템의 신뢰도 분석)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.233-236
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out.

  • PDF

Preliminary Design of Fuel System for the Smart UAV (스마트 무인기 연료시스템 설계에 관한 연구)

  • Kang Myoung-Cheol;Lee Chang-Ho;Kong Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.5-8
    • /
    • 2004
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was peformed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out.

  • PDF

Fuel System Design of the Smart UAV (스마트 무인기 연료 시스템 설계에 관한 연구)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out. Based on this fuel system layout, operational reliability analysis was carried out.

Current Status and Futures of Drones (무인항공기 개발 현황 및 발전방향)

  • Yun, Chul Yong;Kang, Wanggu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.310-311
    • /
    • 2015
  • 최근 스마트폰등 ICT기반의 전자제품들이 보편화 되면서 무인항공기에 적용 가능한 전자기술들이 급속히 개발되어, 항공 기술과 ICT 기반 전자 기술이 융복합되어 무인항공기는 군용위주의 활동 영역을 넘어 민간분야에서 까지 활발히 진출하고 있다. 현재까지는 전통적인 항공 선도 업체들이 군용무인기 중심의 고가의 무인기를 생산하여 시장을 장악하였으나, 이제는 공공 및 민간영역에서 무인기를 상업화하기 위한 기업들이 등장하고 있어 민수영역에서 무인기 시장은 급성장세에 있다. 국내의 무인기 기술은 기술혁신과 시장창출 주도가 가능한 선진권 수준이며, 무인기의 핵심인 ICT기반 전자부품 기술은 세계 최고의 수준으로 두 분야의 기술을 융복합화하여 경쟁력 있는 무인기 개발을 신속히 진행하면, 전 세계적으로 성장하는 무인기 개발 시장은 우리에게 새로운 성장 동력이 될 수 있다. 자율비행, 상황인식 및 회피 기능 등 미래 무인기 선도기술을 개발하고, 국산화지연 또는 외국의 수출제한 품목에 대한 국산화 개발 및 핵심 부품의 국산 경쟁력 강화를 통하여 무인기 산업의 고부가가치를 창출할 수 있다.

  • PDF

Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet (Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 2 : 천이 비행 모드에서 synthetic jet을 이용한 유동제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, $0.95c_{flap}$ and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.

Implementation of Multilateral Control System for Small UAV Control-Focused on Design (소형 무인기 통제를 위한 다자간 방식 관제시스템 구축방안-설계 중심으로)

  • Choi, Hyun-Taek;Kim, Seok-Kwan;Ryu, Gab-Sang
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • In this paper, we propose a design method for the construction of LTE-based small unmanned aerial vehicle control system to quickly and reliably collect multiple small unmanned aerial vehicle position information simultaneously flying all over the country. In particular, the main requirements are the network (N/W), hardware (H/ W), software(SW), Database(DB), development architecture, and business needs. To satisfy these requirements, N/W, H/W, SW, DB design, and architectural design plan were suggested regarding the design requirements of a small UAV system. To effectively control the small unmanned multi-party system in the system design, the architecture is divided into the front-end service area and the back-end service area according to the function and role of the unit system. In the front-end service area that grasps and controls the position and state of small unmanned aerial vehicles (UAVs), we have studied the design part that can be expanded to N through TCP/IP network by applying Client PC method.

Flow Characteristics of Annular Gas Turbine Combustor (환형 가스터빈엔진 연소기 유동 특성 연구)

  • Woo S. P.;Jeung I. S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.36-40
    • /
    • 2004
  • Experimental and numerical studies are carried out for inner flow of small gas turbine engine combustor at normal operating altitude and velocity. First of all inner flow and combustion phenomenon without a load is analyzed for understanding with various back pressure condition due to flight mode of smart UAV.

  • PDF