• Title/Summary/Keyword: 스마트팩토리

Search Result 332, Processing Time 0.022 seconds

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

A Study on Big Data Analysis of Related Patents in Smart Factories Using Topic Models and ChatGPT (토픽 모형과 ChatGPT를 활용한 스마트팩토리 연관 특허 빅데이터 분석에 관한 연구)

  • Sang-Gook Kim;Minyoung Yun;Taehoon Kwon;Jung Sun Lim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.15-31
    • /
    • 2023
  • In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.43-52
    • /
    • 2023
  • Rubber produced by rubber companies is subjected to quality suitability inspection through rheometer test, followed by secondary processing for automobile parts. However, rheometer test is being conducted by humans and has the disadvantage of being very dependent on experts. In order to solve this problem, this paper proposes a deep learning-based rheometer quality inspection system. The proposed system combines LSTM(Long Short-Term Memory) and CNN(Convolutional Neural Network) to take advantage of temporal and spatial characteristics from the rheometer. Next, combination materials of each rubber was used as an auxiliary input to enable quality conformity inspection of various rubber products in one model. The proposed method examined its performance with 30,000 validation datasets. As a result, an F1-score of 0.9940 was achieved on average, and its excellence was proved.

Study on the EMC Engineering for Fixed Installations (복합설비를 위한 EMC 엔지니어링 연구)

  • Young-Heung Kang
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.798-803
    • /
    • 2023
  • In the industrial internet of things (IIoT) industry, including smart factories, there are many cases where electronic devices are complexly combined and installed due to the recent development of intelligent information technology. Electromagnetic waves generated from such complex facilities affect other devices and services, which can lead to safety issues. The problem such as electromagnetic interference (EMI) and electromagnetic compatibility (EMC) generated when controlling complex facilities is an essential element that must be solved, and the engineering basis for EMI and EMC must be established to foster the industry of complex facilities. Therefore, in this study, EMC & EMI engineering demonstration cases for solar power fixed facilities using the national standard guideline have been analyzed. The results show that the electromagnetic risk indices in the solar power facilities have been degraded up to control level, and a national EMC engineering system has been proposed for complex facilities.

Multi-sensor-based Mold Management System Research (멀티 센서 기반 금형 관리 시스템 연구)

  • Shin, Hyun-Jun;Kim, Sung-Jin;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.579-580
    • /
    • 2016
  • In molds management systems using radio frequency identification (RFID), in the case where the RFID tag is lost, the RFID technology cannot be utilized to identify the location of the logistics. In order to solve this problem, a multi-sensor-based mold management system using RFID and infrared sensors is proposed in this paper. The proposed system uses RFID to identify the location of the mold and, by installing infrared sensors on the mold racks, the manager can identify the presence and location of the mold by reaffirming whether the mold exists in that location or not.

  • PDF

Analyzing Factors Influencing the Introduction of Smart Factory : Focusing on Type of Manager and Firm age (스마트 팩토리 도입에 영향을 미치는 요인 분석 : 경영인 유형과 업력을 중심으로)

  • Lee, Dasol;Boo, Jeman;Jung, Hunsik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • In order to provide priorities of the factors affecting the introduction of Smart Factory, This study reconstructed the factors and calculated the priorities through AHP (Analytic Hierarchy Process). The first layer of the hierarchy have 4 factors; productivity increase, brand image improve, marketing improve, cost reduction. The second layer of the hierarchy have 3 factors belong to the first layer, so the total number of second layer is 12. We divided the characteristics of enterprises into type of manager and age. The C.R. (consistency ratio) values of the respondents were found to be less than 0.1 and were judged to be a 'reasonable test'. As a result, the weights of the higher layer and the lower layer were obtained respectively, and then the weights of the higher layer and the weights of the lower layer were multiplied to obtain the total weights. Unlike previous studies that only surveyed factors that companies consider when introducing smart factory, (1) weighing and prioritizing factors were achieved. There are differences in priorities, (2) smart factory can be studied with the type of manager and firm age. When establishing policies, it is a practical implication (3) to assess its strategy not only for government officials but also for executives.

A Study on the Real-Tim Path Control of Robot for Transfer Automation of Forging Parts in Manufacturing Process for Smart Factory (스마트 팩토리를 위한 제조공정 내에서 단조 부품의 이송자동화를 위한 로봇의 실시간 경로제어에 관한 연구)

  • Kang, Jung-Seok;Noh, Sung-Hoon;Kim, Du-Beum;Bae, Ho-Yuong;Kim, Sang-Hyun;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.281-292
    • /
    • 2019
  • This paper proposed a new technology to control a path forging parts in limited narrow space of manufacturing process automation for smart factory. In the motion control, we adapted the obstacle avoidance technology based on ultrasonic sensors. The new motion control performance test for a mobile robot is experimented in narrow space environments. The travelling path control is performed by a fuzzy control logic. which plays a role for selecting an appropriate behavior in accordance with the situation in the vicinity of the mobile robot. Ultrasonic sensors installed at the front face of the mobile robot are used. In order to update the current position and heading angle of the mobile robot, a new approch is adapted. The reliability is illustrated by simulation and experiments.

A Study on Obstacle Avoidance and Autonomous Travelling of Mobile Robot in Manufacturing Precess for Smart Factory (스마트 팩토리를 위한 제조공정내에서 모바일 로봇의 장애물 회피 및 자율주행에 관한 연구)

  • Kim, D.B.;Kim, H.J.;Moon, J.C.;Bae, H.Y;Han, S.H.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.379-388
    • /
    • 2018
  • In this study, we propose a new approach to impliment autonomous travelling of mobile robot based on obstacle avoidance and voice command. Obstacle Avoidance technology of mobile robpot. It has been used in wide range of different robotics areas to minimize the risk of collisions. Obstacle avoidance of mobile robots are mostly applied in transportation systems such as aircraft traffic control, autonomous cars etc. Collision avoidance is a important requirement in mobile robot systems where they all featured some kind of obstacle detection techniques in order to avoid colliding. In this paper it was illustrated the reliability of voice command and obstacle avoidance for autonomous travelling of mobile robot with two wheels as the purpose of application to the manufacturing process by simulation and experiments.

NoSQL-based Sensor Web System for Fine Particles Analysis Services (미세먼지 분석 서비스를 위한 NoSQL 기반 센서 웹 시스템)

  • Kim, Jeong-Joon;Kwak, Kwang-Jin;Park, Jeong-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.119-125
    • /
    • 2019
  • Recently, it has become a social problem due to fine particles. There are more people wearing masks, weather alerts and disaster notices. Research and policy are actively underway. Meteorologically, the biggest damage caused by fine particles is the inversion layer phenomenon. In this study, we designed a system to warn fine Particles by analyzing inversion layer and wind direction. This weather information system proposes a system that can efficiently perform scalability and parallel processing by using OGC sensor web enablement system and NoSQL storage for sensor control and data exchange.

A Study on Improvement of Level of Highway Maintenance Service Using Self-Organizing Map Neural Network (자기조직화 신경망을 이용한 고속도로 유지관리 서비스 등급 개선에 대한 연구)

  • Shin, Duksoon;Park, Sungbum
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2021
  • As the degree of economic development of society increases, the maintenance issues on the existing social overhead capital becomes essential. Accordingly, the adaptation of the concept of Level of service in highway maintenance is indispensable. It is also crucial to manage and perform the service level such as road assets to provide universal services to users. In this regards, the purpose of this study is to improve the maintenance service rating model and to focus on the assessment items and weights among the improvements. Particularly, in determining weights, an Analytic Hierarchy Process (AHP) is performed based on the survey response results. After then, this study conducts unsupervised neural network models such as Self-Organizing Map (SOM) and Davies-Bouldin (DB) Index to divide proper sub-groups and determine priorities. This paper identifies similar cases by grouping the results of the responses based on the similarity of the survey responses. This can effectively support decision making in general situations where many evaluation factors need to be considered at once, resulting in reasonable policy decisions. It is the process of using advanced technology to find optimized management methods for maintenance.