• Title/Summary/Keyword: 쉘 모델

Search Result 160, Processing Time 0.027 seconds

Structural Analysis of Composite Sandwich Panel under Compression Loading (압축하중을 받는 복합재료 샌드위치 패널의 구조해석)

  • Kim, Kwang-Soo;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In this study, structural analyses were carried out on the composite sandwich panel which was tested under compression loading. In the structural analyses, three types of finite element modelling were considered and linear buckling analysis and nonlinear analysis were performed for each FE-model. Through the analyses, it was found that shell elements for face parts and solid elements for core part were appropriate for the better prediction of the buckling load of the panel. If the material failure of the face is critical than overall buckling of the sandwich panel, the use of one shell element through the thickness direction was suitable in the FE-model for the better predictions of failure location and failure load.

Study on the Performance of Waffle slab by Variation on the Section Properties of the Constituent Structural Elements (구조요소의 단면특성에 따른 와플슬래브의 동적특성 분석)

  • Choong, K.K.;Kim, Jae-Yeol;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2009
  • This paper is concerned with the investigation of the structural behavior of waffle structure. Parametric variation on waffle floor thickness, main beam depth and column sizes are imposed to study the effects on mode shapes and natural frequencies of waffle structures. Comparisons between FEM models using shell and 3D-solid elements have also been made. The analysis result has shown that the mode frequencies increase with i) increase in main beam depth at level 2 and ii) decrease in waffle slab thickness at level 3. Both 3D and 2D model shown similar mode shapes. Besides, there is a consistent difference in mode frequencies between 3D and 2D model ranging from 25% to 36%.

  • PDF

Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon;Zi, Goangseuo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.97-107
    • /
    • 2014
  • Finite element modelling and analysis were conducted for the roll-type steel mats which were placed on loose sand and subjected to a standard truck wheel load in this study. The roll-type steel mats mean that the steel mats can be folded as a circle shape for the carrying to fields in cold regions where workability is limited and are developed for a rapid rehabilitation method for roadway across soft ground which is caused by thawing during the summer season in cold regions. The model is composed of link elements to simulate nonlinear behavior of connections between steel mats, thick shell elements to have flexural stiffness of the steel mats, and springs to simulate characteristics of foundation soils. The structural behaviors of the shell, link elements, and springs were verified at each modelling step through experiment and analysis. Beam and shell analysis without the link elements were conducted and compared to results obtained from the model presented in this study. Significant vertical displacement is shown in the shell model with hinge connections. Therefore, the results demonstrate that the analysis model for the roll-type steel mats on loose sand needs further detail parametric studies.

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Dynamic Analysis of Axisymmetric Prestressed Shell Structures Subjected to Seismic Excitations (지진하중을 받는 축대칭 프리스트레스트 쉘 구조물의 동적해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • An axisymmetric shell element which includes the effects of the meridional and circumferential cable prestresses is developed. It is coded for personal computer by the maximum use of axisymmetic properties and the dynamic analysis is performed under the seismic exitations. A ring element is used to fully utilize the characteristics of the axisymmetric shell. The eigenvalue solutions using 20 elements under the initial prestresses are in good agreement with the exact solutions. The results of the seismic analysis show that the radial deflection under the meridional prestress is a little larger than that under the circumferential prestress. The finite element model developed in this study can be very useful to the design applications.

  • PDF

Evaluation of Shell Geometry of the Natural Draught Cooling Tower using Linear Numerical Analysis (선형 전산해석을 이용한 자연 습식 냉각탑의 기하형상에 대한 평가)

  • Noh, Sam-Young;Lee, Sang-Yun;Heo, Dong-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.97-104
    • /
    • 2012
  • In the design procedure of the cooling tower the form-finding of the shell is the most important process, because the shape of the shell determines the sensitivity of dynamic behaviour of the whole tower against wind excitation. In engineering practice, geometric parameters of the shell are generally determined based on natural frequency analysis. 32 cooling tower shell geometries were selected through variation of the geometric parameters of an existing cooling tower shell. They were evaluated based on the first natural frequency. From the result three representative cooling towers are selected for the analysis of the structural behaviour by means of linear FE-method. As a result, a hyperbolic rotational shell with the small radius overall will yield the shell geometry with a higher first natural frequency and thus a wind-insensitive structure.

Finite Element Modelling of Axially Compressed GFRP Cylindrical Panels (축방향으로 압축을 받는 GFRP 원통형 판넬의 유한요소 모델링)

  • Kim, Ki Du
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 1993
  • In order to promote the efficient use of composite materials, effort is currently being directed at the development of design criteria for composite structures. Insofar as design against buckling is concerned, it is well known that, for metal shells, a key step is the definition of 'knockdown' factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric imperfections. At present, the imperfection sensitivity of composite shells has not been explored in detail. Due to the large number of parameters influencing buckling response (considerably larger than for isotropic shells), a very large number of tests would be needed to quantify imperfection sensitivity experimentally. An alternative approach is to use validated numerical models for this task. Thus, the objective of this paper is to outline the underlying theory used in developing a composite shell element and to present results from a validation exercise and subsequently from a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite element modelling. Both eigenvalue and incremental analyses are performed, the latter including the effect of initial geometric imperfection shape and amplitude, and the results are used to estimate 'knockdown' factors for such panels.

  • PDF

Distortional Analysis of Multicell Box Girders with a Trapezoidal Cross-Section Using Force-Decomposition Method (하중분해법을 사용한 제형 다실박스거더의 뒤틀림 해석)

  • Kim, Seungjun;Park, Nam Hoi;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.779-788
    • /
    • 2008
  • In this present study, the three dimensional shell elements analysis method for exact distortional behavior of multicell trapezoidal box girders subjected to an eccentric loading is proposed. In order to perform the independent distortional analysis using shell elements, it is necessary to calculate exact distortional forces. In this study, the force-decomposition equation for applied eccentric load acting on multicell trapezoidal box girder is derived and the equation based on static force equilibrium and superposition theory decompose the eccentric load to the loads cause flexture, torsion and distortion. So by using this force-decomposition equation and shell element analysis, each behavior can be easily analysis independently. This independent analysis method is very useful to physically understand each major behavior of multicell box girder, especially distortional phenomenon. Furthermore, it may be also very useful for designer to perform the independent distortional analysis for diaphragm design using simple 3D shell elements model without preliminary complex calculation for distortional constants.

Free Vibration Analysis of Circular Cylindrical Shell by the Transfer Influence Coefficient Method (전달영향계수법에 의한 원통형 쉘의 자유진동해석)

  • 문덕홍;여동준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.192-196
    • /
    • 1994
  • 본 연구에서는 동적영향계수의 축차전달에 그 개념을 두고 있는 전달영향계수법을 이용하여 탄성적으로 지지된 원통형 쉘구조물에 대하여 자유진동 해석 알고리즘을 정식화하였다. 탄성지지가 없는 일단 고정, 타단 자유의 간단한 모델에 대한 수치실험을 통해서 전달영향계수법으로 구한 해를 전달매트릭스법 및 Irie의 결과와 비교하여 본 기법의 유용성을 검증하였다. 또한, 탄성지지를 갖는 모델에 대해서는 본 방법으로 구한 해와 전달매트릭스법으로 구한 해를 비교 검토하여, 본 기법의 유용성을 확인하였다.

  • PDF

A Study on the Optimal Number fo Cross Beam of Standard P.S.C Girder Bridge by Static Analysis (정적해석에 의한 표준적인 P.S.C거더 교량의 적정 가로보 수에 관한 연구)

  • 최창근;김경호;김재범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.43-55
    • /
    • 2001
  • 본 논문에서는 현행 표준적인 P.S.C거더 교량의 적정 가로보 수를 위한 매개변수 연구를 수행하였다. 교량의 길이는 P.S.C거더교로서 국내에서 가장 흔히 사용되는 30m의 단순교를 채택하였다. 교량의 해석방법으로는 상부의 슬래브와 거더를 효율적으로 모델링하기 위하여 정밀해석법인 유한요소법을 사용하였다. 본 연구에서 사용된 매개변수로는 크게 두 가지로 분류되는데, 하나는 사용된 가로보의 개수이고 다른 하나는 교량의 사각(Skew)이다. 상부 슬래브는 쉘 요소와 빔 요소를 연결하는데 효율적인 회전자유도를 가지는 쉘 요소로 모델링 하였다. 슬래브와 거더의 중심축이 이격되어 있는 문제를 정확히 고려하기 위하여 편심보 요소를 사용하였다. 해석 모델은 가로보가 각각 7,5,3개 있는 경우를 선정하였다. 이러한 조건하에서 정적 해석을 수행하여 최대 휨모멘트, 전단력, 비틀림 모멘트값을 구하여 현행 시방서에서 규정된 극한치를 만족하는지 검토하였다. 검토결과 현재 사용되고 있는 P.S.C거더 교량에서의 가로보 개수는 과다한 것으로 판단되며 경제적인 설계를 위하여 가로보의 개수를 줄일 수 있을 것으로 제안하였다.

  • PDF