• Title/Summary/Keyword: 순차적 크리깅 메타모델

Search Result 5, Processing Time 0.027 seconds

Sensitivity Validation Technique for Sequential Kriging Metamodel (순차적 크리깅 메타모델의 민감도 검증법)

  • Huh, Seung-Kyun;Lee, Jin-Min;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.873-879
    • /
    • 2012
  • Metamodels have been developed with a variety of design optimization techniques in the field of structural engineering over the last decade because they are efficient, show excellent prediction performance, and provide easy interconnections into design frameworks. To construct a metamodel, a sequential procedure involving steps such as the design of experiments, metamodeling techniques, and validation techniques is performed. Because validation techniques can measure the accuracy of the metamodel, the number of presampled points for an accurate kriging metamodel is decided by the validation technique in the sequential kriging metamodel. Because the interpolation model such as the kriging metamodel based on computer experiments passes through responses at presampled points, additional analyses or reconstructions of the metamodels are required to measure the accuracy of the metamodel if existing validation techniques are applied. In this study, we suggest a sensitivity validation that does not require additional analyses or reconstructions of the metamodels. Fourteen two-dimensional mathematical problems and an engineering problem are illustrated to show the feasibility of the suggested method.

Mean-Variance-Validation Technique for Sequential Kriging Metamodels (순차적 크리깅모델의 평균-분산 정확도 검증기법)

  • Lee, Tae-Hee;Kim, Ho-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2010
  • The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean$_0$ validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean$_0$ validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels.

Sequential Feasible Domain Sampling of Kriging Metamodel by Using Penalty Function (벌칙함수 기반 크리깅메타모델의 순차적 유용영역 실험계획)

  • Lee Tae-Hee;Seong Jun-Yeob;Jung Jae-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.691-697
    • /
    • 2006
  • Metamodel, model of model, has been widely used to improve an efficiency of optimization process in engineering fields. However, global metamodels of constraints in a constrained optimization problem are required good accuracy around neighborhood of optimum point. To satisfy this requirement, more sampling points must be located around the boundary and inside of feasible region. Therefore, a new sampling strategy that is capable of identifying feasible domain should be applied to select sampling points for metamodels of constraints. In this research, we suggeste sequential feasible domain sampling that can locate sampling points likely within feasible domain by using penalty function method. To validate the excellence of feasible domain sampling, we compare the optimum results from the proposed method with those form conventional global space-filling sampling for a variety of optimization problems. The advantages of the feasible domain sampling are discussed further.

Reliability-Based Design Optimization Using Kriging Metamodel with Sequential Sampling Technique (순차적 샘플링과 크리깅 메타모델을 이용한 신뢰도 기반 최적설계)

  • Choi, Kyu-Seon;Lee, Gab-Seong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1464-1470
    • /
    • 2009
  • RBDO approach based on a sampling method with the Kriging metamodel and Constraint Boundary Sampling (CBS), which is sequential sampling method to generate metamodels is proposed. The major advantage of the proposed RBDO approach is that it does not require Most Probable failure Point (MPP) which is essential for First-Order Reliability Method (FORM)-based RBDO approach. The Monte Carlo Sampling (MCS), most well-known method of the sampling methods for the reliability analysis is used to assess the reliability of constraints. In addition, a Cumulative Distribution Function (CDF) of the constraints is approximated using Moving Least Square (MLS) method from empirical distribution function. It is possible to acquire a probability of failure and its analytic sensitivities by using an approximate function of the CDF for the constraints. Moreover, a concept of inactive design is adapted to improve a numerical efficiency of the proposed approach. Computational accuracy and efficiency of the proposed RBDO approach are demonstrated by numerical and engineering problems.

Shape Optimization of Multilayer Bellows by Using Sequential Experimental Design (순차적 실험계획법을 적용한 다층관 벨로우즈 형상 최적설계)

  • Oh, Sang-Kyun;Lee, Kwang-Ki;Suh, Chang-Hee;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1007-1013
    • /
    • 2011
  • Because of their high flexibility and durability, multilayer bellows are manufactured for use in commercial vehicles, while single-layer bellows are manufactured for use in passenger vehicles. A study based on the finite element method (FEM) and shape optimization for the single-layer bellows has been actively performed; however, until now, a study based on the FEM has rarely been performed for the multilayer bellows with gaps between the layers. This paper presents a finite-element modeling scheme for the multilayer bellows to improve simulation reliability during the evaluation of stress and flexibility. For performing shape optimization for the multilayer bellows, DOE (design of experiment) and the Kriging metamodel followed by the D-optimal method are used.