• Title/Summary/Keyword: 수화열해석

Search Result 107, Processing Time 0.036 seconds

Field Application of Foundation Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method (매스콘크리트의 수화열 해석 및 현장 계측을 통한 수화발열량차 공법의 현장적용성)

  • Han, Jun-Hui;Lim, Gun-Su;Shin, Se-Jun;Jeon, Choung-Keun;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.229-230
    • /
    • 2023
  • In this study, the hydration heat differential method was applied to mass concrete structures, and the hydration heat analysis was compared and analyzed with on-site measurement results. The results showed that the temperature history measurements of mass concrete were managed at a difference of 8.4 ℃, and although there was some deviation in thermal stress, a similar trend was observed. Consequently, it was determined that the thermal stress on the surface of mass concrete is less than its tensile strength, which would prevent the occurrence of thermal cracks.

  • PDF

Evaluation of Hydration Heat Properties of Mass Concrete and Crack Resistance Performance in Practical Large Underground Structures Using Ternary Blended Cement (3성분계 시멘트를 활용한 실 대형 지하구조물의 매스 콘크리트 수화 발열 특성 및 균열 저항성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Lee, Jae-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.82-91
    • /
    • 2019
  • In this study, in order to evaluate Hydration Heat Characteristics of mass concrete using ternary blended cement for large underground structures, the analysis considering the temperature history and the thermal characteristics inside the actual structure was performed. The results of the analysis are compared with the measured values to verify the reliability of the analysis and to evaluate the crack resistance performance. As a result of the measured the actual structure temperature, The adiabatic temperature rise coefficients K and ${\alpha}$ of the slab were $35.1^{\circ}C$ and 0.72, respectively, and the wall was analyzed as $29.3^{\circ}C$ and 0.67. The analytical results and the correlation coefficients(r) were 0.95 and 0.98, respectively. As a result of evaluating the crack resistance of slab and wall, the minimum crack index of slab and wall was 1.22 and 1.20, respectively. These results were found to satisfy the site management standards.

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate (분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Park, Sang-Won;Han, Jun-Hiu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.169-180
    • /
    • 2024
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker (포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가)

  • Choi, Sang-Hyeon;Park, Byoung-Sun;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2020
  • Crack control is essential to increase the durability of concrete significantly. Healing of crack can be controlled by rehydration of unreacted clinkers at the crack surface. In this paper, by comparing the results of isothermal calorimetry test and regression analysis, the Parrot & Killoh's cement hydration model was verified and clink er hydration model was proposed. The composition and quantification of hydration products were simulated by combining kinematic hydration model and thermodynamic model. Hydration simulation was conducted using the verified and proposed hydration model, and the simulation was performed by the substitution rate of clink er. The type and quantity of the final hydration product and healing product were predicted and, in addition, the optimal cementitious material of self-healing concrete was selected using the proposed hydration model.

Thermal Stress Analysis of the Heat Generation for Mass Concrete Considering Creep Effect (크리이프를 고려한 매스콘크리트의 수화열에 대한 온도응력 해석)

  • Kim, Jin Keun;Lee, Jong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.771-781
    • /
    • 1994
  • The heat generation of cement causes the internal temperature rise and volume change at early age, particulary in massive concrete structures. As the results of the temperature rise and restraint conditions, the thermal stress may induce cracks in concrete. Therefore, the prediction of the thermal stress is very important in the design and construction in order to control the cracks developed in mass concrete. In case of young concrete, creep effect by the temperature load is larger than that of old concrete. Thus, the effect of creep must be considered for checking the cracks, serviceability, durability and leakage. This paper is concentrated on the development of a finite element program which is capable of simulating the temperature history and the thermal stress considering creep and the modified elastic modulus due to inner temperature change and maturity. The analytical results in the inner parts highest important to control cracks are in good agreement with experimental data. Therefore this study may provide available method to control the cracks.

  • PDF

A Study on Effect of Specimen Thickness and Curing Temperature on Properties of Low Heat Concrete by Analysis Program for Heat of Hydration (수화열 해석 프로그램에 의한 저발열 콘크리트의 특성에 미치는 부재두께 및 양생온도의 영향에 관한 연구)

  • Lee, Seung-Min;Rho, Hyoung-Nam;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.31-36
    • /
    • 2008
  • This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.

  • PDF

Analysis for the Control of Thermal Cracks in a Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 수화열해석)

  • Kim, Sang-Chel;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1205-1210
    • /
    • 2004
  • Cracks in the underground structures are mainly observed due to internal ununiformity of thermal stresses or restraint of structural movement in associate with rapid temperature gradient. Especially, thermal cracks are known to occur easily in a massive structure, but possibility of these depend on the amount of cement applied and ratio of span to height of the structure even though the thickness is less than specification‘s. Thus, this study aims at how to control thermal cracks in a massive subway structure and figures out an optimized construction method and procedure. As results of parametric study for length, height and outer temperature for concrete placement, it is found that hydration heats were not affected by both length and height of concrete placement but thermal stresses were greatly dependent. Most effective ways of controling thermal cracks were to fit a proper ratio of length to height of concrete placement and to decrease temperature of concrete placement as much as possible.

  • PDF

Reasonable Evaluation of Thermal Stress in the Hydration Heat Analysis (범용구조해석 프로그램의 수화열응력 산정기법 연구)

  • 전세진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.789-794
    • /
    • 2002
  • The relationship is investigated between material modeling of concrete and the evaluation procedure of thermal stress by the hydration heat. In this respect, some important points are suggested to which special attention should be paid to reasonably evaluate the thermal stress using the widely-used structural analysis programs. This study indicates that proper material model should be used to draw incremental stress evaluation that takes into account the change of elastic modulus with time. Some correction techniques are also presented when using the program that don't have proper built-in procedure for the calculation of the thermal stress.

  • PDF