• Title/Summary/Keyword: 수화반응 모델

Search Result 28, Processing Time 0.024 seconds

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations (차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁)

  • Baek, Woohyeon;Ha, Suhyeon;Hong, Sumin;Kim, Seonah;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.59-71
    • /
    • 2016
  • To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.

Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction (수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델)

  • Lee, Yun;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.128-138
    • /
    • 2015
  • Carbonation is one of the most critical deterioration phenomena to concrete structures exposed to high $CO_2$ concentration, sheltered from rain. Lots of researches have been performed on evaluation of carbonation depth and changes in hydrate compositions, however carbonation modeling is limitedly carried out due to complicated carbonic reaction and diffusion coefficient. This study presents a simplified carbonation model considering diffusion coefficient, solubility of $Ca(OH)_2$, porosity reduction, and carbonic reaction rate for low concentration. For verification, accelerated carbonation test with varying temperature and MIP (Mercury Intrusion Porosimetry) test are carried out, and carbonation depths are compared with those from the previous and the proposed model. Field data with low $CO_2$ concentration is compared with those from the proposed model. The proposed model shows very reasonable results like carbonation depth and consuming $Ca(OH)_2$ through reduced diffusion coefficient and porosity compared with the previous model.

The Analysis of Chloride Ions Intrusion into Concrete Structure (콘크리트 구조물의 염화물이온 침투거동 해석)

  • 김은겸;신치범;이윤한
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.233-241
    • /
    • 1997
  • 최근 해안환경하에 있는 콘크리트구조물의 철근부식은 구조물의 내구성 저하 및 유지관리라는 차원에서 커다란 문제점을 가지고 있다. 이와 같은 현상은 해양구조물의 건설이 날로 증가하고 있고, 또 콘크리트 제조시 잔골재의 일부를 염분이 함유된 해사를 사용함으로써 더욱 심각해지고 있다. 본 연구에서는 콘크리트 표면으로부터 침투해 들어오는 침입염분의 거동을 모델화하였으며, 콘크리트 세공속의 수용액상에 있은 염화물이온의 확산을 포함하는 물리 화학적 진행, 시멘트 수화물에 고정되는 염분의 흡착과 탈착 및 고정염과의 화학반응 등의 현상을 유한요소법에 의해 해석을 실시하였다. 본 연구의 결과는 콘크리트 내부의 철근 발청시기의 예측, 해안환경하에 있는 콘크리트 구조물의 침투 염분에 의한 콘크리트 덮개의 결정, 콘크리트 구조물의 염화물이온의 허용치 설정을 비롯하여 내구년수를 예측하는데 유용하게 활용될 수 있을 것으로 기대된다.

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation (양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.95-104
    • /
    • 2018
  • The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.

Prediction Equation of Setting Time for Mortar Using Super Retarding Agent Using Equivalent Age (등가재령을 이용한 초지연 모르타르의 응결시간 예측식 제안)

  • Han, Min-Cheol;Hyun, Seung-Yong;Kim, Jong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.80-91
    • /
    • 2022
  • This study is to provide an prediction model of setting time of super retarding mortar based on equivalent age method under various super retarding agent contents, curing temperature, and water-binder ratio (W/B). An equation for predicting setting time using maturity was proposed. Test results indicated that the setting time can be predicted by determining the curing temperature, W/B, and super retarding agent contents and substituting it into the equation proposed in this study. The coefficient of determination of the equation is 0.9 or more, and the reliability was confirmed through the F-test. Finally, using the equation proposed in this paper, reasonable quality control is possible regarding the setting of super retarding concrete in practice.

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Basic Analysis on Fractal Characteristics of Cement Paste Incorporating Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 시멘트 페이스트의 프랙탈 특성에 관한 기초적 분석)

  • Kim, Jiyoung;Choi, Young Cheol;Choi, Seongcheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2017
  • This study aimed to conduct the basic analysis on the fractal characteristics of cementitious materials. The pore structure of cement paste incorporating ground granulated blast furnace slag (GGBFS) was measured using mercury intrusion porosimetry (MIP) and the fractal characteristics were investigated using different models. Because the pore structure of GGBFS-blended cement paste is an irregular system in the various range from nanometer to millimeter, the characteristics of pore region in the different scale may not be adequately described when the fractal dimension was calculated over the whole scale range. While Zhang and Li model enabled analyzing the fraction dimension of pore structure over the three divided scale ranges of micro, small capillary and macro regions, Ji el al. model refined analysis on the fractal characteristics of micro pore region consisting of micro I region corresponding to gel pores and micro II region corresponding to small capillary pores. As the pore size decreased, both models suggested that the pore surface of micro region became more irregular than macro region and the complexity of pores increased.

Molecular Design and Characterization of Biodegradable Crosslinked Copolyesters (생분해성 가교 공중합에스테르의 분자설계 및 특성 연구)

  • Sung, Yong-Kiel;Han, Seung-Jun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.108-114
    • /
    • 2001
  • Crosslinked poly(glycerol-co-malate)s were synthesized from L-malic acid in Krebs cycle and glycerol. The synthesized polymer was identified by FT-IR spectroscopy. Swelling degrees of the copolymer hydrogels were increased with an increase in pH of the aqueous solution. Hydrolytic behaviors of the crosslinked copolymers were investigated in various pH buffer solutions at 37${\circ}C$. The Hydrolysis of the copolymers proceeded faster with increasing pH of the aqueous solution. Releasing behaviors of the model drug such as diclofenac monosodium salt were also measured in various pH aqueous solutions at 37${\circ}C$. The release concentration of diclofenac monosodium salt from the hydrogel systems was increased with increasing pH. These facts indicate that the unreacted carboxyl and hydroxyl groups in the copolymers are greatly affected by pH in the conditions.

  • PDF