• Title/Summary/Keyword: 수화물

Search Result 802, Processing Time 0.03 seconds

Experimental Study on Physical Properties and Water Absorption Resistance Evaluation of Cement Mortar Incorporating Inorganic Metal Salt-based Water Repellent Powder (무기물 금속염계 발수분체를 혼입한 시멘트 모르타르의 물리적 특성 및 수분흡수저항성에 대한 실험적 연구)

  • Lee, Won Geun;Yoon, Chang Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.609-616
    • /
    • 2021
  • In this experimental, water-repellent powder, which is a metal salt-based inorganic substance, and natural zeolite powder, which is a pozzolan-based material, were mixed into cement mortar, and their physical properties and resistance to moisture were confirmed. It was confirmed that the test specimen using natural zeolite at the same time had excellent resistance in the water permeation test and the chloride penetration test as compared with the test specimen in which the inorganic metal salt-based water-repellent powder was mixed alone. When a metal salt-based water-repellent powder is used, it cannot be uniformly dispersed inside water due to its insoluble property, and is limited to the surface. When used at the same time as natural zeolite, the setting time at the initial stage of hydration is fast due to the pozzolan reaction, and the water-repellent powder adheres to the porous of the natural zeolite and is evenly distributed inside the test specimen to generate some water resistance.

Study on the Quality Characteristics of High-strength Concrete Using LCD Industrial Waste (LCD 산업부산물을 이용한 고강도 콘크리트의 품질 특성에 관한 연구)

  • Kim, Dong-Jin;Park, Seung-Hee;Choi, Sung;Han, Yang-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.650-657
    • /
    • 2021
  • Alkali activators that stimulate mineral compounds are expensive materials, but in order to replace industrial products of high alkali in gredien ts, both product an d econ omic feasibility must be satisfied. In this study, alkali in dustrial waste(LW) from the LCD man ufacturin g process were used for the purpose of alkali active reaction of GGBFS for high stren gth concrete over 50MPa. Concrete mixed with LW had reduced workability, but it had the characteristic of increasing compressive strength. Analysis using ACI 209 Compressive Strength Model Equation was made to compare the changes in strength coefficients according to LW mixing. The durability test of concrete, such as Chloride Penetration Resistance and carbonation resistance, also showed excellent performance. In the Adiabatic temperature rise test results, the concrete mixed with LW had the effect of accelerating the initial hydration heat. However, the final Adiabatic temperature rise was not significantly affected by the mixing of LW.

Development of Eco-friendly Cement using Reverse Osmosis Brine Water and Metakaolin (역삼투압 농축수와 메타카올린을 사용한 친환경 시멘트의 개발)

  • Kim, Taewan;Han, Ki-Bong;Kim, Do-Hyung;Seo, Ki-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.216-222
    • /
    • 2021
  • This is an experiment to complement new ways of using concentrated water discharged from the seawater desalination plant. In this study, metakaolin, which has excellent chloride ion immobilization effect, was used as the main binder, and 10% and 20% of calcium oxide were substituted with the activator. In addition, tap-water(TW) and reverse osmosis brine water(RW) were used as mixed water. As a result of the experiment, the mixture using RW showed higher compressive strength than TW. It also showed low water absorption and high density. In the mixture using RW as mixed water, a hydration reaction substance called Friedel's salt could be observed. Considering the corrosion problem of steel, RW is considered to be applicable to products such as non-reinforced concrete, brick, and curb stone. Through this study, it is thought that it is meaningful to propose a new application method other than the ocean release of RW.

Evaluation of Filling Performance of Steel Concrete Panel (SCP) Mock-up Member with Low-binder based High-fluidity Concrete (저분체 기반 고유동 콘크리트의 Steel Concrete Panel Mock-up 부재 충전 성능 평가)

  • Park, Gi Joon;Park, Jung Jun;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.477-483
    • /
    • 2019
  • Recently, precast type SCP modules are being used instead of PSC structures in order to reduce the construction period and costs of special structures such as nuclear power plants and LNG storage tanks. The inside of the SCP module is connected with a stud for the integral behavior of the steel and concrete, and the use of high fluidity concrete is required. High fluidity concrete generally has a high content of binder, which leads to an increase in hydration heat and shrinkage, and a problem of non-uniform strength development. Therefore, in this study, fluidity and passing performance of high fluidity concrete according to material properties are investigated to select optimum mix design of low binder based high fluidity concrete. Mechanical properties of high fluidity concrete before and after pumping are examined using pump car. The filling performance of SCP mock-up members was evaluated by using high fluidity concrete finally.

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

Act on the flood control plan for urban river basins (도시하천유역 침수피해대책법안의 주요 내용)

  • Kim, Sang Ug
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.422-422
    • /
    • 2023
  • 최근 발생되고 있는 도시지역에서의 침수피해는 과거와는 다른 양상으로 발생되고 있으며, 이로 인해 많은 재산피해와 소중한 인명피해가 발생되고 있다. 도시지역의 침수피해는 다양한 원인에 의해 피해가 발생된다. 기후변화로 인해 발생되는 높은 강우강도의 집중호우로부터 도시 피복의 불투수화나 부족한 우수유출저감시설로 인한 침투비율의 감소에 따른 유출량의 증대, 짧은 도달시간으로 인한 빠른 하천수위의 상승, 빠른 하천수위의 상승으로 인해 발생되는 하수도의 만관에 따른 관수로화로 인한 역류 발생, 역류된 홍수류의 도시 내 저지대로의 유입, 최대 조위와 맞물려 발생되는 홍수류 배제의 어려움 등은 도시침수라는 결과를 제공하는 주요 원인으로 작동하고 있다. 이러한 현실은 도시지역에서의 침수대책의 수립에 있어 과거와는 다른 특정한 대책의 수립이 필요하다는 점을 시사해 주고 있다. 특히 도시침수를 발생시키는 주요 원인에 대한 개별적인 대책수립보다는 도시침수의 발생확률이 높은 지역에 대해서는 이러한 원인을 종합적으로 고려하여 이를 방어할 수 있는 효율적이고 실제적인 계획을 수립할 필요가 있다. 우리나라는 현재 행정안전부의 자연재해저감종합계획, 환경부의 특정하천유역치수계획 및 하수도정비기본계획을 기본으로 소하천정비기본계획, 하천기본계획 등 소관 부처를 달리하는 다양한 계획들을 수립하여 홍수로부터 귀중한 자산을 보호하려는 노력을 시행하고 있다. 이러한 계획들은 주로 홍수에 대비하고자 하는 특정 구조물의 설계를 중심으로 하고 있으며, 설계에는 항상 경제성의 개념이 수반되므로 설계용량을 초과하는 자연재해의 발생에 대해서도 홍수 발생에 대비하기 위해서는 홍수예보 및 재난대응체계의 운용과 같은 비구조물적인 대책도 매우 중요하게 활용되어야 한다. 이와 같은 현실에서 도시지역의 침수피해를 방지하기 위해서는 이제 과거와는 달리 개별법에 의해 수립되는 각종 계획들을 특정공간에 대해서 종합적으로 고찰하고 최적화하여 현실적이고 효율적인 하나의 계획으로 수립될 필요가 있으며, 하천을 중심으로 시행되고 있는 홍수예보와 유사한 도시침수예보와 같은 비구조물적 대책의 기술적 제고와 시행의 확산이 매우 시급한 실정이다. 본 연구에서는 최근 발의된 「도시하천유역 침수피해방지대책법(안)」의 경과와 이 법률에서 다루고 있는 주요 내용들을 살펴봄으로써 향후 우리나라가 지향해야 할 도시지역의 침수피해에 어떻게 대응해나가야 하는지에 관해 살펴보았다.

  • PDF

Shrinkage Properties of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 사용한 고성능 콘크리트의 수축 특성)

  • Koh, Kyung Taek;Park, Jung Jun;Ryu, Gum Sung;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.787-794
    • /
    • 2006
  • Generally, high performance concrete has characteristics such as low water-cementitious material ratio, lots of unit binder powder, thus the heat of hydration, autogenous shrinkage are tend to be increased. This study is to investigated the effect of the expansive additive and shrinkage reducing agent on the shrinkage properties of high performance concrete as a study to develop the reduction technology of the concrete shrinkage. Test results showed that the expansive additive and shrinkage reducing agent were effective the reduction of shrinkage of high performance concrete. Especially, the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separately using method of that. Also, it analyzed that the combination of expansive additive of 5% and shrinkage reducing agent of 1% was the most suitable mixture, considering to the fluidity, strength and shrinkage properties.

Performance Evaluation of Concrete Bench Flume Using Industrial by Products (산업부산물을 이용한 콘크리트 벤치플룸의 성능평가)

  • Jae-Ho Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.276-281
    • /
    • 2023
  • Water pipes manufactured using existing Portland cement suffer from the problem of rapid deterioration and reduced durability due to the hydration product of cement being vulnerable to acids. Therefore, in this study, water pipes were manufactured using slag and fly ash, which are industrial by-products from various industries, and their characteristics were analyzed. As a result of the experiment, slump in unhardened concrete tended to increase due to the ball bearing action of fly ash, and the amount of air was reduced due to unburned coal, indicating that measures for frost resistance were needed. In addition, the initial strength of the compressive strength was increased through steam curing, and the results were equal to or better than OPC when mixing more than 50 % of slag. The acid resistance results showed that the mass reduction rate was less than 5 %, showing excellent durability performance, and the bending failure load of the water pipe also exceeded the KS standards, so it is judged to be commercializable.

A Review of Physical Properties of Cement-Free Precast Concrete Using Industrial By-Products (산업부산물을 적용한 무 시멘트 프리캐스트 콘크리트의 물리적 특성 검토)

  • Jung, Young-Woong;Yun, Ja-Yeon;Shin, Kyung-Su;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.309-318
    • /
    • 2024
  • This research investigated the feasibility of incorporating industrial by-products into precast concrete formulated with blast furnace slag and natural gypsum. Specifically, the study examined the effects of incorporating steelmaking slag(STS slag), combined heat power plant fly ash, and return dust. The optimal amount of these by-products was determined by measuring air content, slump, and compressive strength at various incorporation levels. Results demonstrated that compressive strength was enhanced across all levels of by-product addition. Notably, incorporating 10% of the by-products led to exceptional early-age strength development. However, a 20% addition of combined heat power plant ash significantly reduced the slump value by approximately 40%. Considering these findings and the requirement for rapid strength development in precast concrete applications, a 10% incorporation of industrial by-products was deemed optimal due to its ability to accelerate early-age strength gain.

Relationship between Carbonation Rate and Compressive Strength in Concrete with Unclear Local Aggregate Qualities (골재 지역 특성이 불분명한 콘크리트의 탄산화 속도 및 강도 상관성)

  • Jin-Won Nam;Hyeong-Ki Kim;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.246-253
    • /
    • 2024
  • When concrete with slag powder or fly ash is under an accelerated carbonation test at early age, a very complicated carbonation behavior occurs since several reactions covering cement hydration, pozzolanic reaction, and carbonation reaction occu simultaneously. In particular, fine and coarse aggregates with poor quality were used, the trend with strength development and carbonation behavior was not clear. In this study, concrete samples with three design strength grade(24 MPa, 27 MPa, and 30 MPa) were manufactured with different aggregates site(A, B, and C). Compressive strength test were performed considering curing ages(7 and 28 days), and the accelerated carbonation tests were performed for 8 weeks for evaluating carbonation rate. The relationship between compressive strength and carbonation rate was analyzed considering mix properties and the aggregate site conditions. In addition, the minimum cover depth satisfying intended service life was obtained through carbonation design based on Domestic Design Code, and the necessities for improving design parameters (direction coefficient and effective water-binder ratio) were suggested.