DOI QR코드

DOI QR Code

LCD 산업부산물을 이용한 고강도 콘크리트의 품질 특성에 관한 연구

Study on the Quality Characteristics of High-strength Concrete Using LCD Industrial Waste

  • 김동진 (성균관대학교 건설환경공학부) ;
  • 박승희 (성균관대학교 건설환경공학부) ;
  • 최성 (경동대학교 토목공학과) ;
  • 한양수 (경동대학교 토목공학과)
  • Kim, Dong-Jin (School of Civil, Architectural Engineering & Landscape Architecture, Sungkyunkwan University) ;
  • Park, Seung-Hee (School of Civil, Architectural Engineering & Landscape Architecture, Sungkyunkwan University) ;
  • Choi, Sung (Department of Civil Engineering, KyungDong University) ;
  • Han, Yang-Su (Department of Civil Engineering, KyungDong University)
  • 투고 : 2021.12.03
  • 심사 : 2021.12.10
  • 발행 : 2021.12.30

초록

광물질 혼화재를 자극하는 알칼리 활성화제는 고가의 소재이지만, 고 알칼리 성분의 산업부산물 대체하기 위해서는 제품성과 경제성을 모두 만족하여야 한다. 본 연구에서는 50MPa 이상의 고강도 콘크리트에 GGBFS의 알칼리 활성 반응을 위한 목적으로 LCD 제조 공정에서 발생하는 알칼리 산업부산물(LW)을 사용하였다. LW을 혼입한 콘크리트는 작업성이 다소 저하되었으나, 압축강도가 증진되는 특징이 있었다. ACI 209.2R-08 압축강도 모델식을 이용하여 분석하여 LW 혼입에 따른 강도계수의 변화를 비교하였다. 콘크리트의 내구성능 시험에서도 염화물 침투 저항성 및 탄산화 저항성에서 우수한 성능을 나타내었다. 단열온도 상승시험 결과에서는 LW를 혼입하면 초기 수화열이 빨라지는 효과가 있으나, 최종 단열온도상승량은 LW의 혼입 유, 무에 큰 영향을 받지 않았다.

Alkali activators that stimulate mineral compounds are expensive materials, but in order to replace industrial products of high alkali in gredien ts, both product an d econ omic feasibility must be satisfied. In this study, alkali in dustrial waste(LW) from the LCD man ufacturin g process were used for the purpose of alkali active reaction of GGBFS for high stren gth concrete over 50MPa. Concrete mixed with LW had reduced workability, but it had the characteristic of increasing compressive strength. Analysis using ACI 209 Compressive Strength Model Equation was made to compare the changes in strength coefficients according to LW mixing. The durability test of concrete, such as Chloride Penetration Resistance and carbonation resistance, also showed excellent performance. In the Adiabatic temperature rise test results, the concrete mixed with LW had the effect of accelerating the initial hydration heat. However, the final Adiabatic temperature rise was not significantly affected by the mixing of LW.

키워드

참고문헌

  1. Bae, S.H., Park, J.I., Lee, K.M., Choi, S. (2009). Influence of mineral admixtures on the diffusion coefficient for chloride Ion in concrete, Journal of the Korean Society of Civil Engineers, 29(4A), 347-353 [in Korean].
  2. Chang, J.J. (2003). A study on the setting characteristics of sodium silicate-activated slag pastes, Cement and Concrete Research, 33, 1005-1011. https://doi.org/10.1016/S0008-8846(02)01096-7
  3. Choi, S., Pyo, S. (2020). Fresh and hardened properties of portland cement-slag concrete activated using the by-product of the liquid crystal display manufacturing process, Materials, 13(19), 4354. https://doi.org/10.3390/ma13194354
  4. Collins, F.G., Sanjayan, J.G. (1999). Workability and mechanical properties of alkali activated slag concrete, Cement and Concrete Research, 29, 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
  5. Davidovits, J. (1991). Geopolymers : inorganic polymeric new materials, Journal of Thermal Analysis and Calorimetry, 37(8), 1633-1656. https://doi.org/10.1007/BF01912193
  6. Haha, M.B., Le Saout, G., Winnefeld, F., Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cement and Concrete Research, 41, 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
  7. Luo, R., Cai, Y., Wang, C., Huang, X. (2003). Study of chloride binding and diffusion in GGBS concrete, Cement and Concrete Research, 33(1), 1-7. https://doi.org/10.1016/S0008-8846(02)00712-3
  8. Pacheco, T.F., Castro, G.J., Jalali, S. (2008). Alkali-activated binders: a review: part 1. historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 22, 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015
  9. Puertas, F., Palacios, M., Vazquez, T. (2006). Carbonation process of alkali-activated slag mortars, Journal of Materials Science, 41(10), 3071-3082. https://doi.org/10.1007/s10853-005-1821-2
  10. Shi, C., Roy, D., Krivenko, P. (2003). Alkali-Activated Cements and Concretes, CRC Press, London and New York, 6-29.
  11. Song, G.I., Yang, K.H., Lee, B.Y., Song, J.K. (2012). Carbonation characteristics of alkali activated blast-furnace slag mortar, Journal of the Korea Concrete Institute, 24(3), 315-322 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.3.315
  12. Tang, L., Nilsson, L.O. (1992). Chloride diffusivity in high strength concrete, Nordic Concrete Research, 11, 162-170.