• Title/Summary/Keyword: 수화물

Search Result 800, Processing Time 0.022 seconds

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.

A Study on the Naejeong (內庭) of Daesoon Jinrihoe Temple Complexes: Focusing on Literary Sources and Context (대순진리회 도장 건축물 내정(內庭)에 대한 연구 - 내정의 문헌 출처와 그 맥락을 중심으로 -)

  • Cha, Seon-keun
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.37
    • /
    • pp.1-52
    • /
    • 2021
  • The Naejeong, the inner court, which is one of the structures found in the temple complexes of Daesoon Jinrihoe. It serves the function of leading and controlling the operation and direction of Korean religions in general. Considering that the dictionary meaning of 'Naejeong' is 'a place to manage the affairs of the state from inside a palace,' the name and function of the structure appear to be in harmony. However, in the Daesoon Jinrihoe context, it is said that the name 'Naejeong (內庭 'Neiting' in Chinese)' is related to a verse from a Daoist scripture. It has not been revealed whether or not the scripture is historical, and what contents or contextual meanings it contains. This study tries to pursue this matter and introduce the original source of the Naejeong in Daesoon Jinrihoe as likely coming from Qianbapinxianjing (前八品仙經, The Former Scripture of the Eight Phases That Reveal the Means to Acquire Immortality). This scripture was compiled in Lüzu-quanshu(呂祖全書, The Entire Collection of Ancestor Lü). This text and its contextual meanings will also be examined. The origin of Qianbapinxianjing dates back to either the late Ming Dynasty or the early Qing. In those days, there existed a group of literati who worshipped Ancestor Lü because he had saved people and taught the art of immortality. The group organized Daoist Spirit-Writing Altars (鸞壇道敎) and invoked the spirit of Ancestor Lü. They were said to have been taught through messages received from spirit-writing sessions (降乩) with Ancestor Lü and several Daoist scriptures were composed by them in this manner. At Immortals-Gathering Pavilion (集仙樓) of Wandian (萬店) in Guangling (廣陵), China, some literati in that group conducted a spirit-writing session with Ancestor Lü between 1589 and 1626, and they produced a scripture which contained the passage, "A crow and a rabbit gather in the middle valley (烏兎結中谷) while a turtle entwined with a snake is in the inner court (龜蛇盤內庭)." They titled the scripture, The Five Movements and Filial Piety (五行端孝). This passage symbolically expresses the accomplishment of immortality in Neidan (internal alchemy) which, within the human body, combines the two energies of yin and yang which are Water and Fire in the Five Movements scheme. This kind of cultivation is said to be achieved only by maintaining the highest possible degree of filial piety. In this context, the Naejeong where a turtle is entwined with a snake (龜蛇合體) was a term that symbolically depicted a place wherein one transforms into an immortal through cultivation. The Five Movements and Filial Piety was included in Qianbapinxianjing after it had been compiled with the other scriptures containing Ancestor Lü's teachings. In 1744, Qianbapinxianjing was included in Lüzu-quanshu, the entire 32-volume collection of Ancestor Lü and printed for the first time. This underlies the belief in Ancestor Lü (呂祖信仰) which embraces the idea of the redemption of people, teaches the arts of immortality, and features Daoist Spirit-Writing Altars, filial piety, the art of Neidan, and the combination of Water and Fire.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

Kinetic Study of Proton Exchange between Al($H_2O$)$_6^{3+}$ Ion and Bulk Water Molecules (Ⅰ) (Al($H_2O$)$_6^{3+}$ 이온과 물 용매 분자 사이에서의 수소 이온 교환의 반응속도론적 연구 (Ⅰ))

  • Moon-Hwan Cho;Jin-Ho Kim;Chang-Ju Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.436-442
    • /
    • 1988
  • The $^1H-nmr$ lineshapes of $H_2O$ in the solution containing $Al^{3+}$ ion have been measured as a function of temperature and $H^+$-ion concentration. Above [$H^+$] = 0.06, the lineshape were analyzed by the uncoupled two-site exchange model. From the proton exchange rate between hexaaquaaluminium ion and bulk water as a function of H-ion concentration. These kinetic data could be fitted to a following linear rate law; that is; 1/${\tau}$ = k$_1$/12 + $k_2$[$H^+$]/6. The following proton exchange parameters were obtained; $k_1^{298}$ = 38.5s$^{-1}$ ${\{Delta}H_1^{\neq}$ = $42.9kJ mole^{-1}$ ${\{Delta}S_1^{\neq}$ = -48.6J $mole^{-1}K^{-1}$ $k_2^{298}$ = $172s^{-1}mole^{-1}$ ${\{Delta}H_2^{\neq}$ = 27.8kJ $mole^{-1}$ ${\{Delta}S_2^{\neq}$ = -90.3J $mole^{-1}K^{-1}$ These activation parameters are indicating an associative interchange, Ia, mechanism for the acid-hydrolysis of hexaaquaaluminium ion and the proton exchange between the hydration spheres of $Al^{3+}$ and $H^+$.

  • PDF

Analysis of anatoxin-a in aqueous and cyanobacterial samples from korean lakes by liquid chromatography with fluorescence detection (액체크로마토그래피-형광검출법에 의한 호소시료의 아나톡신-a 분석)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • Anatoxin-a is a cyanobacterial neurotoxin with a high toxicity produced by Anabaena, Aphanizomenon and Oscillatoria. Water bloom, formed by Anabaena has been occurring frequently in Lake Yeongchun. It is need to develop a sensitive method for determination of anatoxin-a to control potential hazard in raw water resources. In this study, we developed a highly sensitive analytical method of anatoxin-a using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection. Anatoxin-a was converted into a highly fluorescent derivative using 4-fuoro-7-nitro-2,1,3-benzoxadiazole (NBF-F). The method was evaluated in terms of linearity of calibration curve, recovery and repeatability, and the adequate values were obtained. The method detection limit was $0.034\;{\mu}g/g$ and $0.022\;{\mu}g/L$ for algal and water samples, respectively. The concentrations of anatoxin-a were measured in algal and water samples from Lake Andong, Yeongchun and Daechung and ranged from $0.135\;{\mu}g/g$ to $10.979\;{\mu}g/g$ in algal samples and not detected in water samples.

Antifungal Activity of Decursinol Angelate Isolated from Angelica gigas Roots Against Puccinia recondita (당귀로부터 분리한 decursinol angelate의 밀 붉은녹병에 대한 항균활성)

  • Yoon, Mi-Young;Kim, Young-Sup;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Rust causes significant losses in the yield and quality of various crops. The development of new effective and environmentally benign agents against the pathogen is of great interest. In the course of searching a natural antifungal compound from medicinal plants, we found that the methanol extract of Angelica gigas roots had a potent control efficacy against wheat leaf rust (WLR) caused by Puccinia recondita. The antifungal substance was isolated from the methanol extract by silica gel column chromatography, alumina column chromatography and $C_{18}$ preparative HPLC. It was identified as decursinol angelate by EI-MS and $^1H$-NMR data. In in vivo test, decursinol angelate effectively suppressed the development of WLR and red pepper anthracnose (RPA) among the 6 plant diseases tested. In addition, the wettable powder-type formulation of ethyl acetate extract of A. gigas roots significantly suppressed the development of WLR. The crude extract containing decursinol angelate and the chemical appear to be a potential candidate for control of WLR. In addition, this is the first report on the in vivo antifungal activity of decursinol angelate against WLR as well as RPA.

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

The Influence of Nano Synthesized Polymer Paint on Durability of Concrete (나노합성 무기질 폴리머계 표면처리제가 콘크리트의 내구성에 미치는 영향)

  • Beak, Jong-Myeong;Park, Youg-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • This experiment was compared and analyzed between the original surface paint through chloride penetration, neutralization, freeze-thaw and chemical corrosion resistance measuring internal structure and volume of voids in order to evaluate the effect of increase in durability of the newly modeled nano synthesized polymer paint painted on concrete surface which results improvement on air permeability to increase the durability of concrete structures. The test result of measuring volume of void and inner structure, concrete, spreaded with nano synthesized polymer paint, showed decreasing trend of pore volume in the range of less than $0.1{\mu}m$ and more than $0.3{\mu}m$. Also, using an electron microscope inside showed tightness of hydration texture. Chloride penetration depth of concrete, painted with nano synthesized polymer paint, was decreased more than 92% compared to non-painted concrete and 70% with water-based epoxy painted concrete. Especially, chemical corrosion resistance test set with aqueous solution of 5% sulfuric acid, non-painted concrete and water-based epoxy painted concrete showed weight loss of 4% after dipping for 12 days. On the other hand, concrete painted with nano synthesized polymer paint showed 1.7% weight loss under the same condition. Also, it showed great result of appearance under the criteria of Tsivilis et al.

Optimum Mix Proportion of the High Strength and Self Compacting Concrete Used Above-Ground LNG Storage Tank (지상식 LNG 저장탱크용 고강도 자기충전 콘크리트의 최적배합에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.99-107
    • /
    • 2011
  • This study is to performed to find the optimum mix proportion of the high strength and self compacting concrete for the above-ground LNG storage tank construction and field application. If LNG storage tank wall thicknesscan be reduced, the construction cost and quality can be improved by using self-compacting high strength concrete with compressive strength 60~80 MPa. For this purpose, low heat cement (Type IV) and class F fly ash are used in concrete mix to control hydration heat, flowability, and viscosity. Mix design variables of unit water, fly ash replacement ratio, water-binder ratio, and fine aggregate ratio are selected and tested for material properties and manufacturing cost of the concrete. Also, fly ash replacement ratio is considered using confined water ratio test. The test results showed that the optimum mix proportion of the self-compacting high strength concrete characteristics are as follows. 1) In case of the concrete with specified compressive strength of 60 MPa, the optimum mix proportion is fly ash replacement ratio of 20% and water- binder ratio of 27~30%. 2) In case of the concrete with the strength of 80 MPa, the optimum mix proportion is fly ash replacement ratio of 10% and water-binder ratio 25%. But unit water and fine aggregate ratio are 165 $kg/m^3$ and $51{\pm}2%$, respectively, regardless of the traget concrete compressive strength range. Also, test results showed that concrete manufacturing cost of 60 MPa and 80 MPa concrete require additional costs of 14~22% and 33%, respectively, compared to the manufacturing cost of 40 MPa concrete. Therefore, application of the self-compacting high strength concrete has proven to be economical in the perspective of the material cost, quality control, and site management.

Surface Properties of Color Concrete Using Acid Stained Agent (표면 착색용 산화제를 사용한 컬러 콘크리트의 표면 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Park, Hyo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.265-272
    • /
    • 2011
  • Even though concrete is the most important material for building structures, its intrinsic gray color degrades urban esthetics. In order to improve this problem, coloring methods of mixing pigment in concrete batch and painting the surface of concrete surface have been tried. However, applications of the coloring methods in construction field are difficult due to high cost and low durability. Recently, acid stain agent is emerging as a new coloring method for concrete. It is able to apply a remarkably thin colored layer on a concrete surface from chemical reaction between acid and alkaline solutions. This study has examined the changes and variations of the surface layer of mortar specimen from chemical reaction of acid stained agents. The colors were changed into natural irregular stains according to aging. After the staining, no shape change was found from visible inspections. Microstructure of the colored surface applied with acid stained agent was much rougher than that of original mortar. When the colored layer was compared to original surface, crystals of hydrate such as $Ca(OH)_2$ and C-S-H gel were observed. Surface hardness was same or slightly higher in the colored layer. The value of pH was reduced by approximately 10%, weight contents of elements such as Ca, Si, and Al were low. In the chemical composition of the colored layer, the non-cement based elements of Mn, Cr, and Cu increased. Also, Fe and alkali elements of K and Na increased.