• Title/Summary/Keyword: 수학 문제 해결

Search Result 1,336, Processing Time 0.022 seconds

문제해결을 통한 수학적 일반성의 발견

  • Kim, Yong-Dae
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.153-159
    • /
    • 2003
  • 수학 학습의 목표를 수학적 사고력의 신장이라는 측면에서 보았을 때 이를 위하여 문제에 대한 다양한 해법을 찾는 활동은 중요하다. 문제에 대한 다양한 접근은 문제해결의 전략을 학습시키고 사고의 유연성을 길러줄 수 있는 방법이 된다. 문제에 대한 다양한 해법을 찾는 과정에서 이미 알고 있는 지식이 어떻게 응용되는지를 알게 된다. 특히 기하 문제에 대한 다양한 접근은 문제해결의 전략을 학습시킬 수 있는 좋은 예가 된다. 본고에서는 문제해결을 통한 수학적 일반성을 발견하기 위한 방법으로서 문제에 대한 다양한 해법을 연역과 귀납에 의하여 일반화하는 과정을 탐색하고자 한다. 특히 수학 문제에 대한 다양한 해법을 찾는 것은 문제해결 전략으로서 뿐만 아니라 창의적 사고의 신장 측면에서 시사점을 던져준다.

  • PDF

중학생들의 유추에 의한 수학적 문제 해결 과정 : 사상의 명료화를 중심으로

  • Lee, Jong-Hui;Lee, Jin-Hyang;Kim, Bu-Mi
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.245-267
    • /
    • 2003
  • 수학적 문제 해결은 수학 교육에서 중요한 이슈이고 문제 해결 전략으로서의 유추를 주제로 본 연구에서는 중학생들을 대상으로 단순히 유사한 문제를 제시하는 것만으로 문제 해결에 성공을 할 수 있는지, 문제 해결에 성공을 할 수 없다면 중학생들에게 어떤 과정을 제시해야만 문제 해결 과정에서 유추를 사용하여 문제를 해결 할 수 있는지를 알아보고자 한다. 이를 위하여 본 연구에서는 유추에 의한 문제 해결과정을 표상 형성, 인출, 사상, 적합성, 스키마 형성의 과정으로 보고, 이러한 과정 중 사상 단계에서 사상 과정의 명료화를 중심으로 학생들의 유추 추론에 의한 문제해결 과정을 탐구하였다. 연구 결과, 유추 추론 과정에서 근거 문제만을 제시하는 것은 목표 문제를 해결하는데 유추 추론의 성공을 보장한다고 할 수 없었으며, 근거 문제가 제시되었는데도 목표 문제를 해결하지 못하는 경우 사상 과정을 명료화하자 목표 문제를 성공적으로 해결하였다. 또한 학생들은 목표 문제의 성공 이후 유사한 새로운 목표문제를 푸는데 성공하였다.

  • PDF

대학수학에서 문제해결지도

  • Jeong, Chi-Bong
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.207-214
    • /
    • 2003
  • 수학교육에서 학생들이 학습을 통하여 습득하여할 중요한 주제는 수학 지식과 수학을 다루는 인지적 조작 기술일 것이다. 특히 수학지식과 지식의 활용은 문제해결을 통한 학습에서 의미 있게 학생에게 나타나며 이를 통하여 수학 학습 동기를 강화하고 수학의 가치를 느끼게 한다는 점에서 중요한 의의를 갖는다. 대학수준의 수학교육과정에서도 문제해결은 중요한 수학교육의 중심 수단으로서 목적으로서 선언되어 있지만 실제 수업에서 잘 다루고 있지 못하다. 문제해결 지도에 대한 접근 방식으로 1950년대의 문제해결전략을 다룬 Polya, 1990년대의 메타인지적 접근을 강조한 Schoenfeld 및 최근의 여러 연구자들의 활발한 연구가 이어지고 있다. 본 논문에서 대학 수준의 문제해결 수업의 접근 방법을 소개함으로 문제해결 수업을 구현할 수 있는 지식을 제공한다. 특히 Schoenfeld의 문제해결 수업 모델은 수학 교육의 교실 수업으로의 구현 측면에서 갖는 다양한 함의를 제시한다.

  • PDF

초등학교 소집단 협력학습을 통한 수학 문제해결력에 관한 연구

  • Han, Gil-Jun;Lee, Yang-Gi
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.119-126
    • /
    • 2003
  • 학교 현장에서 아이들을 지도하다 보면 문제해결력이 상당히 낮다는 것을 자주 경험하곤 한다. 따라서 그러한 문제점에 대하여 고민하고 다양한 방법을 생각해 보는데, 그 해결 방안으로 소집단 협력학습을 실시하여 아이들의 전반적인 문제해결능력을 높여 보고자 본 연구를 실시하게 되었다. 그러기 위하여 소집단의 구성을 수학 성적을 토대로 하여 5단계로 분류하여 실시하였다. 이에 따른 연구 문제로는 크게 3가지로 정하였는데 다음과 같다. 첫째, 소집단 협력학습이 일제 학습에 비하여 수학 문제해결 능력을 향상시켰는가? (실험반과 비교함) 둘째, 소집단 협력학습이 개인별 수학 문제해결능력을 향상시켰는가? (개인별 비교; 실험반에 국한됨) 셋째, 소집단 협력학습이 수학 교과에 대한 아동들의 수학적인 태도변화를 가져왔는가? 위에서 제시한 연구 문제들을 해결한 결과, 실험반이 비교반보다 문제해결력이 유의미한 수준으로 높게나왔고, 또한 5단계로 분류한 아동들 개개인의 문제해결력에서는 특히 중하위권에 있는 아동들이 실험 후에 문제해결력이 높게 나왔다. 끝으로, 아동들의 수학적인 태도 변화에 관한 설문에서는 소집단 협력학습으로 인하여 수학에 대한 흥미와 자신감이 많이 생긴 것으로 나왔다. 따라서 7차 교육과정에서 주장하는 단계형 수준별 교육과정을 실행하는데 있어서 소집단 협력학습이 하나의 대안이 될 수 있을거라 생각하고, 아동들의 문제해결력을 높이는 또 하나의 수업 형태로서도 시도해 볼만한 것이라 생각한다.

  • PDF

알고리즘을 활용한 수학 문제 해결

  • Kim, Yeong-Mi;Kim, Hyang-Suk;Jo, Yong-Uk
    • Communications of Mathematical Education
    • /
    • v.17
    • /
    • pp.169-179
    • /
    • 2003
  • 컴퓨터로 문제를 해결함에 있어서 중요한 것은 문제 해결 방법을 찾아내는 것이다. 이렇게 특정 문제를해결하기 위해 기술한 일련의 명령문을 알고리즘이라고 한다. 본고에서는 학습자의 수학적 창의력을 신장시킬 수 있는 새로운 문제해결의 방법, 즉 알고리즘을 이용하여 해결하는 방법을 여러 예를 통하여 제시하고자 한다.

  • PDF

Analysis of Strategies for Problem Solving Presented in Elementary School Mathematics Textbooks (초등학교 수학교과서에 나타난 문제해결 전략의 양식에 대한 분석)

  • Kim, Jin Ho
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.565-580
    • /
    • 2002
  • 연구자들은 학생들에게 문제해결 전략을 지도하는 것이 학생들의 문제해결력을 신장시켜 준다는 보고하고 있다. 이와 같은 연구결과를 배경으로 수학 교과서를 통하여 문제해결 전략을 지도하려는 시도들이 미국을 비롯하여 한국에서도 있어 왔다. 본 논문은 문제해결 전략을 교과서에 제시할 수 있는 가능한 세 가지 모델들을 논의하고, 미국과 한국의 수학교과서에서 문제해결 전략을 제시하는 방법을 분석하였다. 한 가지 모델은 문제해결 전략에 한 단원을 할애하는 것이다. 두 번째 모델은 각 수학내용을 지도하는 단원에 문제해결 전략의 지도를 위한 하위단원을 할당하는 것이다. 마지막, 세 번째 모델은 문제해결 전략 지도를 위한 특정 단원이나 하위 단원을 설정하는 것이 아니라 가능한 많은 쪽에 전략을 제시하는 것이다. 위에 언급한 세 가지 가능한 모델을 바탕으로 미국과 한국의 초등학교 수학교과서에서 문제해결 전략을 제시하는 양상을 비교하였다. 이 비교를 위하여 각 학년별로 제시되는 모든 전략들을 교과서와 교사용 지도서를 토대로 추출하였다. 각 교과서에서 전략을 제시한 양식을 비교한 결과 다음과 같은 결론을 얻게 되었다. 한국의 수학교과서는 전형적으로 첫 번째 모델의 양식으로 문제해결전략을 제시하고 있었다. 각 단원마다 별개의 문제해결 전략이 제시되었다. 또한, 학년별 지도 전략을 살펴보면 학년별로 연계성이 있게 전략이 제시 되었다기 보다는 학년별로 다른 다양한 전자의 지도에 중점을 둔 듯하다. 미국의 수학교과서는 두 번째 모델과 세 번째 모델의 중간적인 양식으로 문제해결 전략을 제시하고 있다. 즉, 각 단원마다 문제해결 전략 지도를 위한 하위 단원을 지정하였으며 필요한 경우에는 본 단원의 주 학습요소와 관련된 문제해결 전략은 단원 중에도 제시되고 있었다. 따라서, 차기 수학교과서 개정시기에는 세 번째 모델을 그 모형으로 삼아 문제해결 전략들을 제시하는 방안을 강구해야 할 것으로 기대된다.

  • PDF

문제 해결의 관점에서 본 초등 수학 교과서

  • Lee, Ui-Won
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.151-164
    • /
    • 1999
  • 우리의 경우 학교수학에서 문제해결이 강조된지도 20여년이 넘었으나 아직도 수학을 혐오하는 학생들이 적지 않은 것 같다. 이러한 우리의 수학교육의 문제점은 여러 가지 측면에서 접근할 수 있으나 본 연구에서는 문제해결의 관점에서 접근하고자 한다. 먼저 수학학습평가와 사회에서의 평가를 문제해결의 관점에서 비교하고, 또 수학과 교육과정과 교과서의 구성내용과 체제를 문제해결의 관점에서 구체적인 예제를 통하여 조사한다. 나아가 최근의 구성주의의 관점에서 수학수업에서 계산기의 도입 가능성을 살펴본다.

  • PDF

The History of Mathematical Problem Solving and the Modeling Perspective (수학 문제 해결의 역사와 모델링 관점)

  • Lee Dae Hyun;Seo Kwan Seok
    • Journal for History of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2004
  • In this paper, we reviewed the history of mathematical problem solving since 1900 and investigated problem solving in modeling perspective which is focused on the 21th century. In modeling perspective, problem solvers solve the realistic problem which includes contextualized situations in which mathematics is useful. In this case, the problem is different from the traditional problems which are routine, close, and words problem, etc. Problem solving in modeling perspective emphasizes mathematizing. Most of all, what is important enables students to use mathematics in everyday problem solving situation.

  • PDF

독일 7학년 학생들의 증명문제 해결능력 분석

  • Kwak, Jeeyi;Reiss, Kristina;Thomas, Joachim
    • Communications of Mathematical Education
    • /
    • v.13 no.1
    • /
    • pp.265-274
    • /
    • 2002
  • 이 프로젝트는 수학 수업 중 ‘추론’과 ‘증명’에 관련된 "문제해결과정"에 관심을 가지고, 처음 증명문제를 접하는 독일 7학년 학생들을 대상으로 문제해결능력에 필요한 요인들, 즉, 문제 해결을 위한 수학적 기본지식, 해결된 문제에 대한 인지정도, 논리적 사고 등을 관찰 분석하고 수학교사의 수학에 대한 신념(Beliefs)과 수업 방식이 학생들의 문제해결에 미치는 영향을 조사하는 것에 그 목적을 둔다. 이 프로젝트의 일부의 결과로써, 본 논문에서는 학생들 개개인의 문제해결과정과 그 능력, 그리고 수학에 대한 신념을 서술하고, 수학교사와 학생들의 서로 다른 수학에 대한 신념을 비교 분석한다.

  • PDF

수학적 문제해결 지도에서 교사의 역할에 대한 분석

  • Jeon, Pyeong-Guk;Jeong, In-Su
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.65-70
    • /
    • 2003
  • 문제 해결이 수학교육의 한 목표로 강조되고 있음에도 문제 해결 지도에 있어서 여러 가지 문제점이 지적되고 있는 것이 현실이다. 이러한 문제점 중의 하나는 문제 해결에 대한 교사들의 이해와 그 역할에 대한 인식 부족을 들 수 있다. 본 연구는 수학적 문제 해결 지도에서 교사의 역할 행동을 비교 분석하고, 교사의 역할 행동이 아동의 활동과 문제 해결에 대한 신념에 미치는 영향을 분석하는데 있다.

  • PDF