이 프로젝트는 수학 수업 중 ‘추론’과 ‘증명’에 관련된 "문제해결과정"에 관심을 가지고, 처음 증명문제를 접하는 독일 7학년 학생들을 대상으로 문제해결능력에 필요한 요인들, 즉, 문제 해결을 위한 수학적 기본지식, 해결된 문제에 대한 인지정도, 논리적 사고 등을 관찰 분석하고 수학교사의 수학에 대한 신념(Beliefs)과 수업 방식이 학생들의 문제해결에 미치는 영향을 조사하는 것에 그 목적을 둔다. 이 프로젝트의 일부의 결과로써, 본 논문에서는 학생들 개개인의 문제해결과정과 그 능력, 그리고 수학에 대한 신념을 서술하고, 수학교사와 학생들의 서로 다른 수학에 대한 신념을 비교 분석한다.
문제 해결이 수학교육의 한 목표로 강조되고 있음에도 문제 해결 지도에 있어서 여러 가지 문제점이 지적되고 있는 것이 현실이다. 이러한 문제점 중의 하나는 문제 해결에 대한 교사들의 이해와 그 역할에 대한 인식 부족을 들 수 있다. 본 연구는 수학적 문제 해결 지도에서 교사의 역할 행동을 비교 분석하고, 교사의 역할 행동이 아동의 활동과 문제 해결에 대한 신념에 미치는 영향을 분석하는데 있다.
In this paper, we reviewed the history of mathematical problem solving since 1900 and investigated problem solving in modeling perspective which is focused on the 21th century. In modeling perspective, problem solvers solve the realistic problem which includes contextualized situations in which mathematics is useful. In this case, the problem is different from the traditional problems which are routine, close, and words problem, etc. Problem solving in modeling perspective emphasizes mathematizing. Most of all, what is important enables students to use mathematics in everyday problem solving situation.
In this study, an instrument of mathematical problem solving ability test was considered, and the difference between gifted and regular students in the ability were investigated by the test. The instrument consists of 10 items, and verified its quality due to reliability, validity and discrimination. Participants were 168 regular students and 150 gifted from seventh grade. As a result, not only problem solving but also problem finding and problem posing could be the characteristics of the giftedness.
오래 전부터 수학과의 연구는 학생들의 문제 해결력에 관하여 집중되어 온 것이 사실이다. 그럴 때마다 수학적 사고력에 관한 연구도 상당히 많은 부분이 있어 왔다. 본고에서는 학생들의 수학적 사고를 돕기 위한 방법으로 메타 인지를 강조함으로써 보다 까다로운 (비정형) 문제들의 문제 해결을 돕고자 하였다. 따라서 메타 인지를 유발하는 수업(소수 학습)을 통하여 학생들의 문제 해결력(정형 - 비정형)에서 유의미한 차이가 있는지를 알아보고, 궁극적으로는 메타 인지적 사고가 비정형 문제들을 해결하는 데 미치는 영향을 밝혀 수학 학습의 발전 방안을 찾고자 한다.
요즈음 수학 수업에서 협동 학습을 활용하여 문제 해결을 하는 경우가 많이 늘었다. 학생들이 소집단에서 함께 활동하면 더 나은 문제 해결자가 된다는 것을 알기 때문이다. 그러나 학생들에게 협동적인 상황에서 문제 해결을 하게 하면서 그 평가는 개인 평가나 전통적인 평가에 그치는 경우가 많다. 소집단 협동 학습은 소집단의 구성원이 협동을 할 때 그 효과가 큰 것이며, 소집단 협동 학습에서의 평가는 소집단에 있는 학생들이 수행한 것을 참되게(Authentic) 평가하여야 문제 해결에 대한 올바른 정보를 얻을 수 있고 각 학생들로 하여금 협동 학습에 적극적으로 참여하여 문제를 해결하게 할 수 있다. 만일 협동적인 문제 해결을 하였는데 개인 평가를 실시한다면 학생들은 집단에서 협동할 필요성을 적게 느끼게 되어, 학생들은 협동 학습에 적극적으로 참여하지 않으려 할 것이다. 1990년대 수학교육에 많은 영향을 끼치고 있는 NCTM의 Curriculum and Evaluation Standard for School Mathematics에서도 수학 지도 방법과 평가 방법이 일치하여야 한다고 강조하고 있다. 본고에서는 이와 같은 필요성에 의거하여 수학과 소집단 협동 학습의 유형을 알아보고, 협동적 문제 해결의 평가 방법을 알아보고자 한다.
In this paper we studied problem solving related with geometric interpretation of algebraic expressions. We analyzed algebraic expressions, related these expressions with geometric interpretation. By using geometric interpretation we could find new approaches to solving mathematical problems. We suggested new problem solving methods related with geometric interpretation of algebraic expressions.
본 연구에서 문제제기 수업이 수학학습에 미치는 효과를 알아보기 위하여 문제제기 수업과 기존의 교사 주도식 수업방식에서 문제해결력과 수학적 창의력에 대한 효과를 분석하였다. 중학교 3학년 학생을 대상으로 28주 동안 문제제기 수업을 실시하여 수업을 한 후, 문제해결력 검사지와 수학적 창의력 검사지를 평가한 결과는 다음과 같다. 첫째, 문제제기 수업을 활용한 수업방식이 기존의 교사 주도식 수업방식에 비해 문제해결력 신장에 효과가 있는 것으로 나타났다. 둘째, 문제제기 수업이 교사 주도식 수업에 비해 수학적 창의력 신장에 효과가 있는 것으로 나타났고, 특히 수학적 창의력 하위 요소 중 유창성과 융통성 신장에 효과가 있었다. 따라서 문제해결력 신장과 수학적 창의력 신장을 위해서 학교수업에서 문제제기 수업 활동의 도입을 제언한다.
Mathematical problem solving have placed as one of the important research topics which many researcher have been interested in from 1980's until now. A variety of topics have been researched: Characteries of problem; Processes of how learners to solve them and their metaoognition; Teaching and learning practices. Recently, the topics have been shifted to mathematical learning through problem solving and the connection of problem solving and modeling. In the field of mathematical problem solving where researcher have continuously been interested in, future research topics in this domain are investigated using delphi method.
본 연구는 창의적 수학문제해결력의 검사도구의 요소들을 제시하고 있다. 수학적 창의성을 과정적 관점에서 출발하여 수학적 창의성을 창의적 수학문제제해결과 동일시하고 그에 따른 검사도구의 기본요소들을 Polya의 문제해결기법에서 나타나는 메타인지적 전략과 수학적 마인드를 검사하는 요소들로 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.