학교 현장에서 아이들을 지도하다 보면 문제해결력이 상당히 낮다는 것을 자주 경험하곤 한다. 따라서 그러한 문제점에 대하여 고민하고 다양한 방법을 생각해 보는데, 그 해결 방안으로 소집단 협력학습을 실시하여 아이들의 전반적인 문제해결능력을 높여 보고자 본 연구를 실시하게 되었다. 그러기 위하여 소집단의 구성을 수학 성적을 토대로 하여 5단계로 분류하여 실시하였다. 이에 따른 연구 문제로는 크게 3가지로 정하였는데 다음과 같다. 첫째, 소집단 협력학습이 일제 학습에 비하여 수학 문제해결 능력을 향상시켰는가? (실험반과 비교함) 둘째, 소집단 협력학습이 개인별 수학 문제해결능력을 향상시켰는가? (개인별 비교; 실험반에 국한됨) 셋째, 소집단 협력학습이 수학 교과에 대한 아동들의 수학적인 태도변화를 가져왔는가? 위에서 제시한 연구 문제들을 해결한 결과, 실험반이 비교반보다 문제해결력이 유의미한 수준으로 높게나왔고, 또한 5단계로 분류한 아동들 개개인의 문제해결력에서는 특히 중하위권에 있는 아동들이 실험 후에 문제해결력이 높게 나왔다. 끝으로, 아동들의 수학적인 태도 변화에 관한 설문에서는 소집단 협력학습으로 인하여 수학에 대한 흥미와 자신감이 많이 생긴 것으로 나왔다. 따라서 7차 교육과정에서 주장하는 단계형 수준별 교육과정을 실행하는데 있어서 소집단 협력학습이 하나의 대안이 될 수 있을거라 생각하고, 아동들의 문제해결력을 높이는 또 하나의 수업 형태로서도 시도해 볼만한 것이라 생각한다.
오래 전부터 수학과의 연구는 학생들의 문제 해결력에 관하여 집중되어 온 것이 사실이다. 그럴 때마다 수학적 사고력에 관한 연구도 상당히 많은 부분이 있어 왔다. 본고에서는 학생들의 수학적 사고를 돕기 위한 방법으로 메타 인지를 강조함으로써 보다 까다로운 (비정형) 문제들의 문제 해결을 돕고자 하였다. 따라서 메타 인지를 유발하는 수업(소수 학습)을 통하여 학생들의 문제 해결력(정형 - 비정형)에서 유의미한 차이가 있는지를 알아보고, 궁극적으로는 메타 인지적 사고가 비정형 문제들을 해결하는 데 미치는 영향을 밝혀 수학 학습의 발전 방안을 찾고자 한다.
제7차 교육과정의 기본방향인 '21세기의 세계화 정보화 시대를 주도할 자율적이고 창의적인 한국인 육성'에서 볼 수 있듯이, 새로운 교육과정에서는 학생들의 창의력을 신장시키기 위한 방안으로 교과별 교육과정이나 재량활동 운영 등을 제시한 바 있다. 수학교육에서도 이러한 시대적 흐름에 발맞추어 수학적 창의력의 신장이 강조되고 있는 상황이다. 그동안 이론적인 측면과 실제적인 측면에서 수학적 창의성에 대한 성과가 축적되었다. 이론적인 측면에서 볼 때, Haylock(1987)등에 의해 창의력과 수학적 창의력의 구분되었으며, 특히 '수학적' 창의력에 대한 다양한 정의가 제안되었다. 실제적인 측면에서도 수학적 창의력을 측정하려는 평가 도구들이 그 동안 여러 가지로 개발하였다. 그러나, 이러한 수학적 창의력에 관한 전반적인 연구는 종국적으로 교실 수학수업에 반영되어야 함에도 불구하고, 그리 만족스럽지 못한 상황이다. 특히, 교실에서 수학수업을 실제로 담당하는 교사들이 수학적 창의력을 위한 수업을 하고자 하더라도 당장 가까이에서 구할 수 있는 교수 학습 자료가 여전히 부족한 상황이다. 물론 그 동안 교실 수학수업에서 사용할 수 있는 창의력 개발 프로그램이 전무한 것은 아니다. 그런데 그들 대부분은 게임이나 퍼즐을 이용한 것으로 그 수준이 단순 흥미유발에 그치고 있거나 소수의 영재아를 위한 소재를 중심으로, 특히 수학적 사고 과정을 따르기보다는, 시행착오를 거쳐 원하는 결과를 얻을 가능성이 많으며, 수학과의 연계성이 불분명한 채로 단순놀이에 그치는 경우가 적지 않아, 수업과 연관되어 창의력의 신장이라는 측면에서 볼 때, 적용하기 어려운 사례가 많다. 이러한 상황을 개선하는 데 기여하고자, 현재 교과교육공동연구 지원사업의 하나로 한국 학술 진흥재단의 지원을 받아, '개방형 문제(open-ended problems)'를 중심 소재로 한 '수학적 창의성'을 신장하기 위한 교수학습 프로그램을 개발하여, 중학교 1학년을 대상으로 연구를 진행하고 있다. 개방형 문제라 함은 명백한 정의가 어렵지만 Pehkeon(1995)는 개방형문제의 정의를 명백히 하기위한 시도로서 그 반대로 닫힌 문제에 대한 정의로부터 시작하여, 어떤 문제가 닫혀있다고 하는 것은 그 문제의 출발 상황과 목표 상황이 닫혀 있는 것, 즉 명백히 설명되어있을 때라면 개방형 문제는 이와 반대의 개념임을 시사하였다. Silver(1995)는 개방형 문제를 문제 자체가 다른 해석이 가능하거나 서로 다를 인정할만한 답을 가질 수 있는 문제 또는 풀이과정이 다양한 문제, 자연스럽게 다른 문제들을 제안하거나 일반화를 제시할 수 있는 문제라고 정의하였다. 따라서 개방형 문제란 출발상황이나 목표 상황의 일부가 닫혀있지 않을 때를 말하고 문제의 조건을 만족하는 해답이 여러 가지로 존재하는 문제를 뜻한다. 수학적 창의력을 개발하는 데, 다른 문제 유형보다도, 개방형 문제가 유리하다는 점은 이미 여러 학자들에 의해 주장되어왔다. 미국 국립영재교육센터(NRCG/T)는 기존의 사지선다형이나 단답형 문제와 질문들은 학생들의 사고 능력에 관한 정보를 거의 알려주지 못하기 때문에 한 가지 이상의 답을 요구하는 ‘open-ended' 또는 ’open-response' 문제와 질문을 가지고 수학 분야에서의 창의적 사고 능력과 표현능력을 측정해야 한다고 하였고, 개방형 문제가 일반적으로 정답이 하나인 문제보다 고차원적인 사고를 요구하게 하는 문제 형태라고 하였다. 본 연구에서는 이러한 근거를 바탕으로 개방형 문제의 유형을 다양한 답이 존재하는 문제, 다양한 해결 전략이 가능한 문제, 답이 없는 문제, 문제 만들기, 일반화가 가능한 문제 등으로 보고, 수학적 창의성 중 특히 확산적 사고에 초점을 맞추어 개방형 문제가 확산적 사고의 요소인 유창성, 독창성, 유연성 등에 각각 어떤 영향을 미치는지 20주의 프로그램을 개발, 진행하여 그 효과를 검증하고자 한다. 개방형 문제를 활용한 수학적 창의력 신장 프로그램을 개발하고 현장 학교에 실험 적용하여 그 효과를 분석하고자 하는 본 연구는 창의력 신장에 비중을 두는 수학과 교수-학습 과정에 실제적인 교수 학습 자료를 제공하는 것뿐만 아니라 교사들에게는 수학교실에서 사용 가능한 실제적인 활용방안을, 학생들에게는 주어진 문제를 여러 가지 각도에서 생각하면서 다양한 사고를 경험하는 기회를 가질 수 있어, 수학을 보는 학생들의 태도에도 긍정적인 변화를 가져올 수 있을 것이라 기대한다.
In this study, I set the 5th grade children mathematically gifted in elementary school to pose freely the creative and difficult mathematical problems by using their knowledges and experiences they have learned till now. I wanted to find out that the math brains in elementary school 5th grade could posed mathematical problems to a certain levels and by the various and divergent thinking activities. Analyzing the mathematical problems of the mathematically gifted 5th grade children posed, I found out the math brains in 5th grade can create various and refined problems mathematically and also they did effort to make the mathematically good problems for various regions in curriculum. As these results, I could conclude that they have had the various and divergent thinking activities in posing those problems. It is a large goal for the children to bring up the creativities by the learning mathematics in the 2009 refined elementary mathematics curriculum. I emphasize that it is very important to learn and teach the mathematical problem posing to rear the various and divergent thinking powers in the school mathematics.
Problem-Based Learning has many implications on teaching and learning. Through the problem-Based Learning, students device their plans to solve the given problems and discuss with workers to find and share some ideas or mathematical contents needed to solve those problems. In this paper we studied characteristics of Problem-Based Learning problem and tried o find out the standard criterion of problem analysis that were appropriate to Problem-Based Learning. We applied them to analyze problems in textbooks and problems that were developed for Problem-Based Learning. Using he result, the further research questions and implications were suggested.
수학교육에서 목표지향형 평가는 교육목표를 세분화시키고 목표한 평가 기준에 성취해야할 최저 수준에 입각해서 하는 평가이다. 일반적으로 수학교육의 목표에는 문제해결능력의 향상, 새로운 지도법의 개발, 교과과정의 개발 및 그 교과목의 시행과 추천하고자하는 평가법, 자력에 의한 발전적인 문제 해결지도와 수학적 사고력 향상에 있으며 그런 사고력 검정을 위한 문제 출제 및 문제 변별력 측정, 문제 해결 시도를 위한 효과적인 지도법의 개발 등은 모두 수학과의 목표지향형 평가의 개선에 유익한 시도로 인정되고 있다.(중략)
‘수학을 한다는 것은 수학자가 하는 것처럼 하는 것이다.’ 이 말은 여러 번의 시도와 실패를 반복해 가면서 ‘왜 이렇게 될까?’ 라는 의문을 가지고 여러 가지 창의적인 수학적 사고를 먼저 해보고 문제를 대하는 것을 뜻한다. 생활 속의 수학 문제는 바로 이 점에서 시사하는 바가 크다. 이런 수학 문제를 풀 때 학생들은 수동적이 아닌 능동적인 논리적 사고를 한다. 본 연구에서는 대학 입시제도로 인해 지금까지의 수학을 암기위주로 수동적으로만 학습하였던 수학 부진학생들에게 생활과 연관된 수학문제들을 제시함으로써 수학 우수 학생과 비슷한 능동적 구성활동을 유발할 수 있었으며 수학 부진 학생들과 우수 학생들의 지금까지 배운 수학 학습의 전이에 어떤 요인이 영향을 주었는지를 조사하였다.
수학적 문제 해결은 수학 교육에서 중요한 이슈이고 문제 해결 전략으로서의 유추를 주제로 본 연구에서는 중학생들을 대상으로 단순히 유사한 문제를 제시하는 것만으로 문제 해결에 성공을 할 수 있는지, 문제 해결에 성공을 할 수 없다면 중학생들에게 어떤 과정을 제시해야만 문제 해결 과정에서 유추를 사용하여 문제를 해결 할 수 있는지를 알아보고자 한다. 이를 위하여 본 연구에서는 유추에 의한 문제 해결과정을 표상 형성, 인출, 사상, 적합성, 스키마 형성의 과정으로 보고, 이러한 과정 중 사상 단계에서 사상 과정의 명료화를 중심으로 학생들의 유추 추론에 의한 문제해결 과정을 탐구하였다. 연구 결과, 유추 추론 과정에서 근거 문제만을 제시하는 것은 목표 문제를 해결하는데 유추 추론의 성공을 보장한다고 할 수 없었으며, 근거 문제가 제시되었는데도 목표 문제를 해결하지 못하는 경우 사상 과정을 명료화하자 목표 문제를 성공적으로 해결하였다. 또한 학생들은 목표 문제의 성공 이후 유사한 새로운 목표문제를 푸는데 성공하였다.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.315-335
/
2010
The goal of this research was to study the effects of the Mathematical Problem Generating Program on problem solving ability and learning attitude. The experiment was carried out between two classes. One class was applied with the experimental program (treatment group), and the other continued with normal teaching and learning methods (comparative group). In this study, two 5th grade elementary classes participated in Seoul city. In this study, the students were tested their problem solving abilities by the IPSP test and learning attitude by the Korean Education Development Institute (KEDI) before and after use of the program. The collected results were t-tested to find any meaningful changes. The results showed the followings. First, use of the mathematical generating program showed meaningful progressive results in problem solving ability. Second, the students that used the program showed positive results in learning attitude. In conclusion, learning mathematics using the problem generating method helps students deeper understand and solve complex problems. In addition, problem solving abilities can be improved and the attitude towards mathematics can be changed while students are using an active and positive approach in problem solving processes.
In this study, the researcher developed a course integrated mathematical problem posing activities in order to enhance pre-service mathematics teachers' ability to carry out problem posing activities in mathematics classroom, and examined the changes of pre-service mathematics teachers' perceptions about problem posing through the course. The problem posing course developed in this study consisted of three stages: education on the theories regarding problem posing; activities with problem posing; development and implementation of problem posing tasks. According to the results of the questionnaires, interviews, and class journals data analysis, the problem posing experiences provided in this study were very effective in improving pre-service mathematics teachers' understanding of the problem posing strategies and the benefit of problem posing activities to student learning. Particularly, the experience in various problem posing activities and the implementation experience of problem posing provided in the course played a key role in the improvement of pre-service mathematics teachers' understanding of problem posing and PCK.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.