• Title/Summary/Keyword: 수평 지진계수

Search Result 39, Processing Time 0.017 seconds

An Experimental Study on Fiber Reinforced Elastomeric Bearing (섬유보강 면진베어링의 실험적 특성 해석)

  • 문병영;강경주;강범수;김계수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In order to study the characteristics of fiber reinforced bearing, the steel plates of laminated rubber bearing were replaced with fibers which have same effects of steel plates. The comparison of vertical test and horizontal test of laminated rubber bearing and fiber reinforced bearing shows that the effective damping of fiber reinforced bearing is higher than laminated rubber bearing. This result implies the high energy dissipation ability of fiber reinforced bearing under earthquake excitation. These fiber reinforced bearing can be applied to the low-coast building.

Earth Pressure Acting on Rigid Retaining Wall due to the Dynamic Load (동하중에 의한 강성벽체에 작용하는 토압)

  • 박종덕;전용백
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.157-168
    • /
    • 2000
  • 토류구조물의 안정문제로는 장단기적으로 정적인 경우와 동적인 경우, 그리고 지반의 동적 거동특성, 흙의 강도저하 등을 미리 파악하여 기술적인 대처를 할 필요가 있을 것이다. 본 연구에서는 실내 모형 실험을 통하여 구조물의 배면에 토성이 다른 일반모래, 표준모래, 점성토를 뒷채움하여 다짐없이 강사만 하고, 룰러다짐, 진동다짐을 하여 토피의 수평 진동거리를 길게, 짧게 그리고 중간으로 하여 강성벽체에 작요?는 수평토압에 대한 정적, 동적 특성을 규명하는 것이다. 모형 실험장치로는 실험대, 토조, 토압측정장치, 진동하중 발생장치, 진동측정장치, 강사기, 롤러 등을 설치하여 거리에 따른 병진운동으로 가속도와 수평토압, 수평토압계수, 전체토압, 토압의 작용점, 지진토압증분 증을 구하여, 실험결과와 기존 이론결과, 그리고 유한요소 해석결과와 비교 고찰하였다.

  • PDF

Dynamic behavior of the bridge with seismic isolation bearing (내진 분리 베어링이 설치된 교량의 동적 거동)

  • 전귀현
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the bridge with the seismic isolation bearing. Also the numerical analyses are performed for investigating the response characteristics of the bridge isolated with the lead-rubber bearing under the ground motions compatible to Korea bridge design response spectra. It is found that the pier design force can be considerably smaller than the one for the bridge with the fixed bearing. It is observed that the lead-rubber bearing has the great effectiveness for reducing the longitudinal seismic force in case of the bridges with low and medium periods. Therefore the seismic isolation bearing can be used instead of the fixed bearing for the economic and safe design of the bridge.

  • PDF

Scale-Up Factor for Seismic Analysis of Building Structure for Various Coordinate Systems (건축구조물의 지진해석에서 좌표축의 설정에 따른 보정계수 산정법)

  • Yu, Il-Hyang;Lee, Dong-Guen;Ko, Hyun;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.33-47
    • /
    • 2007
  • In a practical engineering, the equivalent static analysis (E.S.A) and the response spectrum analysis (R.S.A) are generally used for the seismic analysis. The base shears obtained from the E.S.A are invariable no matter how the principal axes of building structures are specified on an analysis program while those from the R.S.A are variable. Accordingly, the designed member size may be changed by how an engineer specify the principal axes of a structure when the R.S.A is used. Moreover, the base shears in the normal direction to the excitation axis are sometimes produced even when an engineer performs a response spectrum analysis in only one direction. This tendency makes the base shear, which is used to calculate the scale-up factor, relatively small. Therefore the scale-up factor becomes larger and it results in uneconomical member sizes. To overcome these disadvantages of the R.S.A, an alternative has been proposed in this study. Three types of example structures were adapted in this study, i.e. bi-direction symmetric structure, one-direction antisymmetric structure and bi-direction antisymmetric structure. The seismic analyses were performed by rotating the principal axes of the example structures with respect to the global coordinate system. The design member forces calculated with the scale-up factor used in the practice were compared with those obtained by using the scale-up factor proposed in this study. It can be seen from this study that the proposed method for the scale-up factor can provide reliable and economical results regardless of the orientation of the principal axes of the structures.

Dynamic Factor of Safety Calculation of Slope by Nonlinear Response History Analysis (비선형 응답이력해석을 통한 사면의 동적 안전계수 계산)

  • Lee, Yonghee;Kim, Hak-Sung;Ju, Young-Tae;Kim, Daehyeon;Park, Heon-Joon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.5-12
    • /
    • 2021
  • Pseudo-static slope stability analysis method is widely used in engineering practice to calculate the seismic factor of safety of slope subjected to earthquake ground motions. Although the dynamic analysis method is well recognized to have the primary advantage of simulating the stress-strain response of soils, it is not often used in practice because of the difficult in estimating the factor of safety. In this study, a procedure which utilizes the dynamic analysis method to extract the transient dynamic factor of safety is devleoped. This method overcomes the major limitation of the pseudo-static method, which uses an empirically determined seismic coefficient to derive the factor of safety. The proposed method is applied to a slope model and the result is compared with that of the pseudo-static method. It is shown that minimum dynamic factor of safety calculated by the dynamic analysis is slightly larger than that determined from the pseudo-static method. It is also demonstrated that the dynamic factor of safety becomes minimum when the horizontal seismic coefficient and horizontal average acceleration are maximum.

A Study on the Limit State of Steel Structures Under Earthquake (내진해석을 위한 강구조물의 극한상태에 관한 연구)

  • Lee, Seung-Joon;Koo, Min-Se;Chung, Lan;Shin, Dong-Ki
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 1991
  • The procedure of the elastic response spectrum method which is used in the codes of many countries involves the computation of a static horizontal substitute loading resulting from the earthquake. The substitute loading is divided by a behavioral factor in order to take energy dissipation due to the real nonlinear structural behavior and damping effects ect. into account. The behavioral factors widely used in many countries are based not on the exact calculation but only on the empirical data. In order to determine the behavioral factors analytically, it is necessary to define the limit state of structures as a first step. In this work, the methods of the determination of limit state for the steel structures are discussed in the geometric, serviceabile and material apsects, and the behavioral factors for the three types of structures are calculated.

  • PDF

Seismic Analysis of the Multi-Span Continuous Bridge Considering the Friction of the Expansion Bearings (가동받침 마찰을 고려한 다경간 연속교의 내진 해석)

  • Juhn, Gui Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the multi-span continuous bridge considering the friction of the expansion bearings. Also the numerical analysis is performed for estimating the effect of the friction on the seismic response of the multi-span continuous bridge under the longitudinal ground motion compatible to Korean bridge design response spectra. It is found that even small friction coefficient of the expansion bearings has significant effect on reducing the superstructure displacement due to energy dissipation and distributing the inertia force of the superstructure to the substructures due to frictional force. It is observed that such favorable friction effects increase as the friction coefficient increases and the magnitude of the ground motion decreases. Therefore, the friction of the expansion bearings can be effectively used for the safe and economic design of the continuous span bridge with many spans and large superstructure weight under the small to medium scale longitudinal ground motions.

  • PDF

Evaluation of the Strength Required in Current Seismic Design Code (현행 내진설계 규준의 수평강도 요구에 대한 평가)

  • 한상환;오영훈;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.281-290
    • /
    • 1997
  • Current seismic design code is based on the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, lateral strength required to maintain target ductility ratio was first calculated from nonlinear dynamic analysis of the single degree of freedom system. At the following step, base shear foeces specified in seismic design code compare with above results. If the base shear force required to maintain target ductility ratio was higher than the code specified one, the lack of required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of push-over analysis.

  • PDF

Evaluation of Stability of Quay Wall Considering Overtopping of Tsunami (지진해일파의 월파를 고려한 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.31-45
    • /
    • 2012
  • This study was conducted to estimate the stability of a quay wall in case of wave overtopping under the combined action of an earthquake and tsunami using limit equilibrium method. The tsunami force was calculated by using a numerical program called TWOPM-3D (3-D one-field Model for immiscible TWO-Phase flows). Especially, the wave force acting behind the quay wall after a tsunami wave overtopping was estimated by treating back fill as a permeable material. The stability of the quay wall was assessed for both the sliding and overturning modes under passive and active conditions. The variation in the stability of the quay wall with time was determined by parametric studies, including those for the tsunami wave height, seismic acceleration coefficient, internal friction angle of the soil, wall friction angle, and pore water pressure ratio. When the earthquake and tsunami were considered simultaneously, the tsunami induced wave overtopping increased the stability of the quay wall under the passive condition, but in the active condition, the safety factors decreased.

Equivalent Linear Stiffness Matrix of Pile Foundation for the Seismic Response Analysis of Bridges (교량의 지진응답해석을 위한 말뚝기초의 등가 선형 강도행렬)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Seismic design forces for bridge components may be determined by modifying elastic member forces of design earthquakes using appropriate response modification factors according to the national design code of bridges Modeling technique of pile foundation system is one of the important parameters which greatly affects the results in the process of the elastic seismic analysis of a bridge system with pile foundation. In this paper, a approximate and simplified modeling technique of a pile foundation system for the practical purposes is presented. The modeling technique is based on the stiffnesses of pile foundation during earthquake. The horizontal stiffnesses are determined from the resistance-deflection curves derived from the results of dynamic field tests using cyclic loads and the vertical stiffness includes the effects of the end bearing capacities and side friction of piles as well as the pile compliances under the expected vertical load level. The applicability of the proposed technique has been validated through the some example bridge analyses.

  • PDF