• Title/Summary/Keyword: 수평전단성능

Search Result 94, Processing Time 0.026 seconds

Behavioral Characteristics and Energy Dissipation Capacity of Short Coupling Beams with Various Reinforcement Layouts (다양한 배근상세를 갖는 짧은 연결보의 주기거동 특성과 에너지소산능력의 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2008
  • The cyclic behavior and energy dissipation mechanism of short coupling beams with various reinforcement layouts were studied. For numerical analysis of coupling beams, nonlinear truss model was used. The results of numerical analysis showed that the coupling beams with conventional reinforcement layout showed pinched cyclic behavior without significant energy dissipation, whereas the coupling beams with diagonal reinforcement exhibited stable cyclic behavior without pinching. The energy dissipation of the coupling beams was developed mainly by diagonal reinforcing bars developing large plastic strains rather than concrete which is a brittle material Based on this result, simplified equations for evaluating the energy dissipation of coupling beams were developed. For verification, the predicted energy dissipation was compared with the test results. The results showed that the simplified equations can predict the energy dissipation of short coupling beams with shear span-to-depth ratio less than 1.25 with reasonable precision, addressing various design parameters such as reinforcement layout, shear span-to-depth ratio, and the magnitude of inelastic displacement. The proposed energy equations can be easily applied to performance-based seismic evaluation and design of reinforced concrete structures and members.

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

Seismic Response Control of Cable-Stayed Bridge using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 사장교의 지진응답제어)

  • Park, Kwan-Soon;Koh, Hyun-Moo;Ok, Seung-Yong;Seo, Chung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.51-62
    • /
    • 2004
  • Fuzzy supervisory control technique for the seismic response control of cable-stayed bridges subject to earthquakes is studied. The proposed technique is a hybrid control method, which adopts a hierarchical structure consisting of several sub-controllers and a fuzzy supervisor. Sub-controllers are independently designed to reduced the responses to be controlled of a cable-stayed bridge, and a fuzzy supervisor achieves improved seismic control performance by tuning the pre-designed sub-controllers. It is realized by converting static gains of the sub-controllers into time-varying dynamic gains through the fuzzy inference mechanism. To evaluate the feasibility of the proposed technique, the benchmark control problem of cable-stayed bridge proposed by Dyke et al. is adopted. The control variables for the seismic response control of the cable-stayed bridge are determined to be t도 shear forces and bending moments at the base of the towers, the longitudinal displacements at the top of the towers, the relative displacements between the deck and the tower, and the tensions in the stay cables. Comparative results between the fuzzy supervisory controller and LQG controller demonstrate the effectiveness of the proposed control technique.

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

Flexural Experiment of PSC-Steel Mixed Girders and Evaluation for Analyses on Tangentional Stiffness of Connection (프리스트레스트 콘크리트-강 혼합거더의 휨 실험 및 경계면 수평계수 분석)

  • Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook;Yoo, Sung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • This study was performed to evaluate joint behavior of prestressed concrete(PSC)-steel mixed girders through the flexural test of 14 beams according to embedded length, amount of reinforcing steel, stud arrangement, and prestressing force. All test beams were failed by turns of desertion of reinforcing steel, stud, and steel plate. From test results, prestressing force was more effective on performance of connection than stud arrangement and reinforcing steel. And the spacing of stud is also more effective than embedding length. This paper also presented 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-steel mixed girders. According to the slip modulus, the nonlinear analysis showed that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results showed that the PSC-steel hybrid girders with shear connectors took the part of partial composite action in ultimate load stage. In addition, it was founded that stud shear connectors and welded reinforcements were contributed to improve the ultimate strength of hybrid girders for about 20%.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

Evaluation of Soil Parameters Using Adaptive Management Technique (적응형 관리 기법을 이용한 지반 물성 값의 평가)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.

Simple Model for Preliminary Design of Hexagrid Tall Building Structure (헥사그리드 고층건물구조의 예비설계를 위한 단순모델)

  • Lee, Han-Ul;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • High-rise building shapes are changing from orthogonal to irregular form and the current trend is to arrange members in geometric grid-patterns at the perimeter of buildings. This study proposes a simple model for the preliminary design of a hexagrid high-rise building. The size of the cross section is set to be different at each module and hexagrid unit, which is different from the previous studies in which all hexagrid members were the same. To examine the effect of hexagrid size on structural performance, 60-story hexagrid buildings with 1-, 2- and 4-story high modules are designed and analyzed. Maximum lateral displacement, steel tonnage, load carrying percentage of perimeter frame and combined strength ratio are compared for 15 buildings. As the lateral load carrying capacity of hexagrid structure was inferior to a diagrid structural system, proper lateral stiffness should be allocated to the core frame in a hexagrid structure. The best ratio of flexural to shear deformation was 4 and larger unit size was better in considering constructional cost and structural efficiency. As the maximum lateral displacements of the buildings were within 84%~108% of the limit, the proposed method seems to be applicable to preliminary design of hexagrid buildings.

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake (지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향)

  • Kim, Jung-Tae;Hong, Eun-Soo;Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.861-874
    • /
    • 2019
  • A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.