Browse > Article
http://dx.doi.org/10.9711/KTAJ.2019.21.6.861

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake  

Kim, Jung-Tae (Dept. of Civil and Environmental Engineering, KAIST)
Hong, Eun-Soo (Dept. of Civil and Environmental Engineering, Kongju National University)
Kang, Seok-Jun (Dept. of Civil and Environmental Engineering, KAIST)
Cho, Gye-Chun (Dept. of Civil and Environmental Engineering, KAIST)
Publication Information
Journal of Korean Tunnelling and Underground Space Association / v.21, no.6, 2019 , pp. 861-874 More about this Journal
Abstract
A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.
Keywords
Numerical analysis; Dynamic behavior; Vertical shaft-tunnel connection; Soil-structure interaction; Interface stiffness;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Aguilar-Tellez, M.A., Mendez-Marroquin, R., Rangel-Nunez, J.L., Comulada-Simpson, M., Maidl, U., Auvinet-Guichard, G. (2012), "Mexico City deep eastern drainage tunnel", Proceedings of the 7th International Symposium TC28 IS: Geotechnical Aspects of Underground Construction in Soft Ground, Vol. 1, London, pp.175-191.
2 Bandis, S.C., Lumsden, A.C., Barton, N.R. (1983), "Fundamentals of rock joint deformation", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 20, No. 6, pp. 249-268.   DOI
3 Choi, W.Y., Park, J.D., Lee, S.W. (2014), "Influence of the joint stiffness on the segment design", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 1, pp. 63-74.   DOI
4 Davy, P., Darcel, C., Le Goc, R., Mas Ivars, D. (2018), "Elastic properties of fractured rock masses with frictional properties and power law fracture size distributions", Journal of Geophysical Research: Solid Earth, Vol. 123, No. 8, pp. 6521-6539.
5 Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., Lopez-Comino, J.A., Clinton, J.F., Westaway, R., Cauzzi, C., Dahm, T., Wiemer, S. (2018), "The November 2017 $M_w$ 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea", Science, Vol. 360, No. 6392, pp. 1003-1006.   DOI
6 Itasca, F. (2013). Fast lagrangian analysis of continua in 3 dimensions, Online Manual.
7 Jang, D.I., Kim, J.I., Kwak, C.W., Park, I.J. (2017), "Study on flexible segment efficiency for seismic performance improvement of subsea tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 503-515.   DOI
8 Kim, J.T., Cho, G.C., Kang, S.J., Kim, K.J., Hong, E.S. (2018), "3-dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 5, pp. 887-897.   DOI
9 Kim, Y.M., Jeong, S.S, Kim, K.Y., Lee, Y.H. (2011), "A study on the dynamic behavior of vertical shaft in multi-layered soil", Journal of the Korean Society of Civil Engineers, Vol. 31, No. 4C, pp. 109-116.   DOI
10 Kim, Y.M., Jeong, S.S, Lee, Y.H., Jang, J.B. (2010), "Seismic design of vertical shaft using response displacement method", Journal of the Korean Society of Civil Engineers, Vol. 30, No. 6C, pp. 241-253.
11 Mylonakis, G., Gazetas, G. (2000), "Seismic soil-structure interaction: beneficial or detrimental?", Journal of Earthquake Engineering, Vol. 4, No. 3, pp. 277-301.   DOI
12 Kulhawy, F.H. (1975), "Stress deformation properties of rock and rock discontinuities", Engineering Geology, Vol. 9, No. 4, pp. 327-350.   DOI
13 Li, W., Bai, J., Cheng, J., Peng, S.Y.D., Liu, H. (2015), "Determination of coal-rock interface strength by laboratory direct shear tests under constant normal load", International Journal of Rock Mechanics and Mining Sciences, Vol. 77, pp. 60-67.   DOI
14 Likar, J., Marolt, T., Grov, E. (2015), "Seismic influences on underground structures", Proceedings of the 13th ISRM International Congress of Rock Mechanics, Montreal, pp. 1-11.
15 Ohbo, K., Ueno, K. (1992), "Dynamic behavior of super deep vertical shaft during earthquake", Proceedings of the 10th World Conference, Madrid, pp. 5031-5036.
16 Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D., Modaressi, A. (2008), "Numerical simulation of dynamic soil-structure interaction in shaking table testing", Soil Dynamics and Earthquake Engineering, Vol. 28, No. 6, pp. 453-467.   DOI
17 Rayhani, M.H., El Naggar, M.H. (2008), "Numerical modeling of seismic response of rigid foundation on soft soil", International Journal of Geomechanics, Vol. 8, No. 6, pp. 336-346.   DOI
18 Rosso, R.S. (1976), "A comparison of joint stiffness measurements in direct shear, triaxial compression, and in situ", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 13, No. 6, pp. 167-172.   DOI
19 Sawada, M., Haba, K., Hori, M. (2018), "Estimation of surface fault displacement by high performance computing", Journal of Earthquake and Tsunami, Vol. 12, No. 4, 1841003.   DOI
20 Saxena, N., Paul, D.K. (2012), "Effects of embedment including slip and separation on seismic SSI response of a nuclear reactor building", Nuclear Engineering and Design, Vol. 247, pp. 23-33.   DOI
21 Saxena, N., Paul, D.K., Kumar, R. (2011), "Effects of slip and separation on seismic SSI response of nuclear reactor building", Nuclear Engineering and Design, Vol. 241, No. 1, pp. 12-17.   DOI
22 Seed, H.B., Idriss, I.M. (1970), Soil moduli and damping factors for dynamic response analyses, Report No. UCB/EERC-70/10, Earthquake Research Center, University of California, Berkeley, pp. 48.
23 Tuladhar, R., Maki, T., Mutsuyoshi, H. (2008), "Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil", Earthquake Engineering and Structural Dynamics, Vol. 37, No. 1, pp. 43-59.   DOI
24 Yamazaki, Y., Segawa, N., Koizumi, A. (2013), "Evaluation of earthquake resistance of shield-tunnel/vertical-shaft connections and countermeasure technology", NTT Technical Review, Vol. 11, No. 1, pp. 1-6.
25 Yu, Y., Damians, I.P., Bathurst, R.J. (2015), "Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions", Computers and Geotechnics, Vol. 65, pp. 164-174.   DOI