• Title/Summary/Keyword: 수치 제어

Search Result 1,387, Processing Time 0.032 seconds

Active Control of Earthquake Responses Using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 지진응답의 능동제어)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.75-81
    • /
    • 2001
  • Fuzzy supervisory control method is studied for the active control of earthquake excited structures. The proposed algorithm supervises and tunes previously designed control gains by evaluating the state of a structure through the fuzzy inference mechanism, which uses the information of relative displacements and velocities. Example designs and numerical simulations of earthquake exited three degrees of freedom structures are performed to prove the validity of the proposed control algorithm. Comparative results with conventional LQR method show that the proposed method is effective for the vibration suppression of earthquake excited structures.

  • PDF

Numerical Study on the Crack-propagation Controlling in Blasting Using Notched Charge Hole (노치 장약공을 이용한 발파균열제어에 관한 수치해석적 연구)

  • Cho, Sang-Ho;Park, Seung-Hwan;Kim, Kwang-Yeom;Nakamura, Yuichi;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • Mechanical excavation techniques employing tunnel boring machines (TBM) and rock splitters have been proposed to minimize rock damage for tunnel and underground waste repository facilities. Such a mechanical excavation, however, is extremely expensive and not applicable in all cases. For these reasons, controlled blasting using notched charge holes have been suggested to achieve crack growth along specific directions and inhibit growth along other directions. This study introduces a dynamic fracture process analysis code to simulate fracture processes of rock which has a notched charge hole.

A Study on Ship's Automatic Track-keeping Control considering disturbance effect (외란을 고려한 선박 자동 침로 제어 수치 시뮬레이션 연구)

  • Le, Thanh-Dat;Im, Nam-Kyun;Lee, Sang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.17-20
    • /
    • 2013
  • Many researches have been conducted in the field of constructing controllers for ships over 20 years. But still, ship automatic track-keeping controllers has not been designed for ship's automatic berthing as they considered nearly constant ship's speed. This study dealt with this problem to design track-keeping control on ship's model of SAE NURI using nonlinear mathematical expression. By using this control, the ship is auto track-kept in fare-way at reducing speed to anchorage place. The simulation results proved that this control can be adapted in ship's auto berthing in near future.

  • PDF

A Controller Based on Velocity Estimator for a Wheeled Inverted Pendulum Running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 속도 추정기 기반 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • In this research a controller based on velocity estimator for a Wheeled Inverted Pendulum (WIP) is designed and various numerical simulation studies are carried out. The WIP has stable and unstable equivalent points. To Keep the unstable equilibrium point, a controller should control carefully the wheels persistently. There are angle, angular velocity, displacement, and velocity of the WIP for controller inputs. The velocity is obtained by differentiating the encoder signals from the motor and is subject to the resolution of the encoder. An improved velocity detection method is proposed based on low resolution encoder and velocity estimator. Various numerical simulations are carried out for showing the validation of the velocity estimator in case of the inclined road condition.

A Study on the IoT Network Traffic Shaping Scheme (IoT 네트워크의 트래픽 쉐이핑 기법 연구)

  • Changwon Choi
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.75-81
    • /
    • 2023
  • This study propose the traffic shaping scheme on IoT Network. The proposed scheme can be operated on the gateway which called sink node and control the IoT traffic with considering the traffic type(real-time based or non real-time based). It is proved that the proposed scheme shows a efficient and compatible result by the numerical analysis and the simulation on the proposed model. And the efficient of the proposed scheme by the numerical analysis has a approximate result of the simulation.

Development of a Prototype of FEM Simulation Environment for Temperature Controller Design (온도 제어기 설계를 위한 유한 요소법을 이용한 시뮬레이션 환경 프로토타입 구현)

  • Jang, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.696-702
    • /
    • 2010
  • In many industrial applications, it is very important to control the temperature of the controlled object to the target temperature as closely as possible. Although it is apparent that the great obstacles in controller design are time-delay of the thermal responses of the controlled object and the effect of thermal interference between neighboring heating zones, one more fundamental obstacle is a very large amount of time which is required during repeated experiments in controller design process. Therefore, a convenient simulation environment, which can represent thermal behavior accurately within appropriate time, is needed. In this paper, a prototype of 2D FEM (finite element method) heat transfer simulation environment using MATLAB is constructed to be usefully adopted into industrial applications with temperature controller design.

A Numerical Study on the Alignment of Surface Structures on Silicon-germanium Thin Films under a Localized Modulation of Surface Diffusivity (표면확산계수의 국부적 제어를 통한 실리콘-게르마늄 박막상 표면구조물의 정렬에 관한 수치해석적 연구)

  • Kim, Yun Young;Han, Bong Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.79-83
    • /
    • 2015
  • This paper presents a numerical study on the alignment of ridge-like surface structures evolving on silicon-germanium thin films under localized modulation of surface diffusivity. A situation is considered in which the surface diffusion of film material is selectively promoted such that its morphology is perturbed to periodic patterns. To simulate the growth behavior, a governing equation is formulated taking the surface chemical potential into account, and its solution is numerically sought using a finite-difference method. Results show that an initially planar surface coalesces upon the diffusivity modulation, and the surface structures can be aligned by changing the frequency of modulation condition. This research suggests a bottom-up fabrication technique that can manage the regularity of surface structures for thin film devices.

Effect of a Pressure Relief System in a High-speed Railway Tunnel (고속 열차 터널의 공기압력 감소를 위한 압력 제어 시스템)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sang Pil
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • High-speed trains have been developed widely in many countries in order to transport large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. The resistance caused from air pressure induces micro pressure wave and discomfort to passengers in a train. Therefore, a pressure relief system should be installed in a tunnel to reduce the resistance acting against the running train in a tunnel. Additionally, the shape of a grain should be streamlined in order to reduce aerodynamic resistance caused by a high-speed train. The cross-section of a tunnel also should be carefully designed to reduce discomfort of passengers. This study represents the effect of pressure relief ducts installed between two running tunnels. The pressure relief duct was integrated with a cross-passage in order to save cost and construction time. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.