• Title/Summary/Keyword: 수치해석 시뮬레이션

Search Result 669, Processing Time 0.029 seconds

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Designing Content Elements of the Programming Curriculum as a Instrumental Subject for Gifted Science High School (과학영재 고등학교 도구교과로서의 프로그래밍 교육과정 내용요소 설계)

  • Kim, JongHye
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • In this study, contents of programming curriculum were designed as instrumental subjects for scientifically gifted students, not for IT gifted ones. Firstly, the programming curriculum consisted of 3 sections; Programming Understanding, Object-Oriented Programming, and Simulation Programming as a result of two semesters. Then, the lectures including project-based and problem-solving tasks were given to scientifically gifted students in a high school during one semester to verify whether they could apply the contents to studies and researches in math or science or not. As a result of this study, the students could improve numerical analysis and simulation program development capabilities in math or science as well as the problem-solving ability based on computational thinking. Moreover, it was proved that the students changed their perception about programing learning. They started to think that programing learning was necessary to studies and researches in math or science. The results of this study propose guideline to design programming curriculum as instrumental subjects for scientifically gifted students.

  • PDF

Study on the Prediction of Lateral and Yawing Behaviors of a Leading Vehicle in a Train Collision (철도차량 충돌 시 선두차량의 횡 및 요잉 거동 예측 연구)

  • Kim, Jun Woo;Jeong, Eui Cheol;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this study, we derived theoretical equations for the zigzag movement of a leading vehicle, which is the most frequent behavior in train accidents, by using a simplified spring-mass model for the rolling stock. In order to solve the equations of motion, we applied the Runge-Kutta method, which is the typical numerical analysis method used for differential equations. Furthermore, the lateral displacement of the wheel-set at the wheel-rail interface was estimated using kinetic energy. In order to verify the derived equations, we compared the theoretical and simulated results under various collision conditions. The maximum relative deviations of the lateral displacements were 0.8 [%] ~ 4.7 [%] in light collisions and 0.6 [%] ~ 5.1 [%] under derailment conditions. When an accident is simulated, these theoretical equations can be used to predict the overall behavior and obtain the offset of the body-to-body link as the initial perturbation.

Development of three-dimensional thermal oxidation simulator (3차원 산화 시뮬레이터 개발)

  • 이제희;윤상호;광태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.38-45
    • /
    • 1997
  • In this paper, the three-dimensional stress effect of thermal oxide is simulated. We developed a three-dimensional finite element numerical simulator including three-dimensional adaptive mesh generator that is able to refine and eliminate nearby moving boundary of oxide, and oxidation solver with stress model. To investigate the behavior of thermal oxidation the simulations of thermal oxidation for island and hole structures are carried out assuming silicon wafer of <100> direction, temperature of $1000^{\circ}C$, oxidation time of 60min, wet ambient, initial oxide thickness of $300\AA$, and nitride thickness of $2, 000\AA$. The main effect of deformation at the corner area of oxide is due to distribution of oxidant, but the deformation of oxide is affected by the stressin theoxide. In the island structure which is the structure mostly covered with nitride and a coner is opended to oxidation, oxidation is reduced at the coner by compressive stress. In the hole structure which is the structure mostly opedned to oxide and a coner is convered with nitride, however, oxidation is increased at the coner by tensile stress.

  • PDF

Numerical Simulation of Failure Mechanism of PELE Perforating Thin Target Plates (얇은 표적체판에 천공하는 PELE 의 파괴 메커니즘 수치시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1577-1583
    • /
    • 2012
  • Penetrator with enhanced lateral effect (PELE) is a novel projectile that does not require dynamite and a fuse. It comprises a high-density jacket that is closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE using AUTODYN-3D code, the calculation models of the projectile body and the bullet target were developed and the process of penetrating an aluminum-2024 alloy target using PELE was simulated. The scattering characteristics after PELE penetrated the aluminum-2024 alloy target were studied for different filling materials. The explicit finite element analysis of PELE fragmentation was implemented with the stochastic failure criterion in AUTODYN-3D code. As the filling expanded, the fragments gained velocity and dispersed laterally, increasing the damage area considerably. The number and shape of PELE fragments differed depending on the impact pressure of the filling that fragmented during the penetration and lateral dispersion processes.

Development of a User-friendly Continuous-system Simulation Language (사용자 편의성을 고려한 연속체계 모의실험 언어의 개발)

  • 민경하;임창관;박찬모
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1993.10a
    • /
    • pp.12-13
    • /
    • 1993
  • 컴퓨터를 이용한 모의 실험 방법은 과학 및 공학 분야뿐만 아니라 경제,사회 현상등에도 널리 적용될 수 있는 유용한 도구이다. 그 중에서도 연속체계 모의 실험은 미분 방정식으로 모델링되는 시스템을 대상으로 하는 경우가 맡으며, 이를 위하여 그동안 맡은 연속체계 모의 실험 언어들이 개발되었다. 그러나 그들은 대부분 사용하기가 복잡하여 사용자 편의성을 고려한 모의 실험 언어에 대한 필요성이 증대되었다. 본 연구에서는 사용자에개 최대한 편의성을 제공하는 연속체계 모의 실험 언어인 PCSL (Postech Continuous-system Simulation language)을 개발하였다. PCSL 프로그램은 프로그램 헤더, 상수 정의부, 함수 정의부, 매개 변수 정의부, 초기화 선언부, 모델 정의부, 종료 조건 선언부, 출력 선언부 등으로 나누어 진다. 그리고 출력으로는 계산 결과를 파일에 저장, 흑은 수치로 인쇄하거나 그래프로 그려서 보여준다. PCSL 처리 시스템은 모델 정의부에서 주어진 미분방정식을 해석해서 digital-analog simulation 기법으로 풀 수 있는 형태로 변환하는 번역기와 이렇게 변환된 형태의 미분방정식과 여러 가지 조건들을 고려해서 C 프로그램을 생성해주는 생성기, 생성된 C 프로그램을 실행시켜서 그 결과를 얻는 실행기,그리고 사용자에게 편리한 입출력 방법을 제공하는 사용자 인터페이스로 구성된다. 번역기에서는 모델로 주어진 미분방정식의 종류를 결정한 후에 이들을 digital-analog simulation 기법으로 풀 수 있는 형태로 변환한다. 생성기에서는 번역기의 결과를 받고,프로그램 상의 여러 가지 조건들을 고려해서 C 프로그램을 생성한다. 여기서 생성된 C프로그램은 미분방정식을 포함하는 ‘f.c'와 조건들을 포함하는'main.h', 그리고 digital-analog simulation 기법을 이용하는 모의 실험 알고리즘을 구현한 'main.c'로 구성된다. 그리고 실행기에서는 생성기에서 생성한 C 프로그램을 실행시켜서 결과를 얻는다. 여기에서 필요로 하는 PCSL 프로그램의 내응은 종료 조건 선언부, 출력 선언부 등이다. 마지막으로 사용자 인터페이스는 사용자가 간편하게 PCSL 프로그램을 입력할 수 있게 도와주며 모의 실험 결과를 쉽게 화면상에 보여주기 위한 것이다. 이 때에 사용자가 원하면 계산 결과를 그래프로 그려서 보여주는 기능과 화면에 보이는 결과를 프린터로 출력할 수 있는 기능을 제공한다. 실형 결과로는 먼저 선형 상미분방정식의 예로 mass-damper-spring system, 비선형 상미분방정식의 예로는 van der Pol 방정식, 연립 상미분방정식의 예로는 mixing tank problem 등을 보였으며, 그의 공학에서 일어나는 여러 가지 문제들도 다루었다.

  • PDF

An Experimental Study on Performance of the Fixed-type OWC Chamber for Wave-Energy Conversion (고정식 파력발전용 OWC챔버의 성능파악을 위한 실험적 연구)

  • B.S. Hyun;P.M. Lee;D.S. Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.318-328
    • /
    • 1991
  • The present paper describes the experimental study on the fixed-type wave-energy conversion system, consisting of the OWC-type wave-energy absorbing chamber and the duct for the air turbine. For simplicity, a screen of wire mesh was employed in place of an air turbine in order to simulate its effects on OWC chamber. Experiments were performed at the towing tank in regular waves with the frequency range of 0.22-0.75Hz. Comparison wish the numerical prediction using a potential flow-based method [4] was made to validate the capability of numerical code. It was shown that the agreements between measured and calculated results are quite good, giving a confidence in prediction method. Simulation of air turbine using a wire-mesh screen was successful, at least in a qualitative sense, to investigate the inter action between the OWC chamber and an air turbine. Results also showed that the effects of a wire-mesh screen on chamber efficiency are negligible, and the present model can be effectively utilized for the practical use in ocean waves with the frequency range under 0.3Hz.

  • PDF

A berthing control for underwater vehicle with velocity constraints (속도구속조건을 이용한 수중 이동체의 접안제어)

  • Nam Taek-Kun;Kim Chol-Seong;Roh Young-Oh;Park Young-San
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we study the stabilization control if an underwater vehicle from its initial posture to its desired one. We assume tint the underwater vehicle has velocity constraint, i.e. it has no velocity component for some direction. Our approach is based on the nonholonomic system which am derived from velocity constraints that cannot integrable. We proposed a control strategy for posture control of the underwater vehicle using multi-rate digital control. The proposed control scheme is applied to the berthing control if an underwater vehicle and verified the effectiveness if control strategy by numerical simulation.

  • PDF

A Modelling of magnetization reversal characteristics in magneto-optic memory system (광자기 기억장치에서의 자화반전 특성 모델링)

  • 한은실;이광형;조순철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1849-1860
    • /
    • 1994
  • Domain wall dynamics in thin film of amorphous Rare Earth-Transistion Metal alloys were investigated using numerical integration of the Landau-Lifshitz-Gilbert equation. The thin film was divided into a two-dimensional square lattice ($30\times30$) of dipoles. Nearest-neighbor exchange interaction magnetic anisotropy, applied magnetic field, and demagnetiing field of interacting anisotropy, applied magnetic field, and demagnetizing field of interacting dipoles were considered. It was assumed that the film had perfect uniaxial anisotropy in the perpendicular direction and the magnetization reversal existed in the film. The time of domain wall creation and the thickness of the wall were investigated. Also the motion of domain walls under an applied field was considered. Simulation results showed that the time of domain wall creation was decreased significantly and the average velocity of domain wall was increased somewhat when the demagnetizing field was considered.

  • PDF

Development of Numerical Simulation of Particle Method for Solving Incompressible Flow (비압축성 유동 해석을 위한 입자법 수치 시뮬레이션 기술 개발)

  • Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo;Kim, Young-Hun;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • A particle method recognized as one of gridless methods has been developed to investigate incompressible viscous flaw. The method is more feasible and effective than conventional grid methods for solving the flaw field with complicated boundary shapes or multiple bodies. The method is consists of particle interaction models representing pressure gradient, diffusion, incompressibility and the boundary conditions. In the present study, the models in case of various simulation condition were checked with the analytic solution, and applied to the two-dimensional Poiseuille flow in order to validate the developed method.