• Title/Summary/Keyword: 수치지도화

Search Result 177, Processing Time 0.025 seconds

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Variable Selection for Multi-Purpose Multivariate Data Analysis (다목적 다변량 자료분석을 위한 변수선택)

  • Huh, Myung-Hoe;Lim, Yong-Bin;Lee, Yong-Goo
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.141-149
    • /
    • 2008
  • Recently we frequently analyze multivariate data with quite large number of variables. In such data sets, virtually duplicated variables may exist simultaneously even though they are conceptually distinguishable. Duplicate variables may cause problems such as the distortion of principal axes in principal component analysis and factor analysis and the distortion of the distances between observations, i.e. the input for cluster analysis. Also in supervised learning or regression analysis, duplicated explanatory variables often cause the instability of fitted models. Since real data analyses are aimed often at multiple purposes, it is necessary to reduce the number of variables to a parsimonious level. The aim of this paper is to propose a practical algorithm for selection of a subset of variables from a given set of p input variables, by the criterion of minimum trace of partial variances of unselected variables unexplained by selected variables. The usefulness of proposed method is demonstrated in visualizing the relationship between selected and unselected variables, in building a predictive model with very large number of independent variables, and in reducing the number of variables and purging/merging categories in categorical data.

A Study on Automatic Threshold Selection in Line Simplification for Pedestrian Road Network Using Road Attribute Data (보행자용 도로망 선형단순화를 위한 도로속성정보 기반 임계값 자동 선정 연구)

  • Park, Bumsub;Yang, Sungchul;Yu, Kiyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.269-275
    • /
    • 2013
  • Recently, importance of pedestrian road network is getting emphasized as it is possible to provide mobile device users with both route guidance services and surrounding spatial information. However, it costs a tremendous amount of budget for generating and renovating pedestrian road network nationally, which hinder further advances of these services. Hence, algorithms extracting pedestrian road network automatically based on raster data are needed. On the other hand, road dataset generated from raster data usually has unnecessary vertices which lead to maintenance disutility such as excessive turns and increase in data memory. Therefore, this study proposed a method of selecting a proper threshold automatically for separate road entity using not only Douglas-Peucker algorithm but also road attribute data of digital map in order to remove redundant vertices, which maximizes line simplification efficiency and minimizes distortion of shape of roads simultaneously. As a result of the test, proposed method was suitable for automatic line simplification in terms of reduction ratio of vertices and accuracy of position.

Analysis of Fractal Dimension for Urban Spatial Structure Based on Box Counting Method : Focusing Buildings Locations and Road Compositions in Cheongju (박스 계수법을 이용한 도시공간구조의 프랙탈 차원 분석 : 청주시의 건축물 분포 및 도로구조 사례를 중심으로)

  • Song, Sun-Gi;Kim, Dong-Won;Hwang, Hee-Yun
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2010
  • This study, using Fractal theory, aims to examine the meaning in the aspect of urban spatial structure by reflecting the characteristics of elements organizing the urban space and at the same time measuring the urban form quantitatively. By calculating Fractal Dimension to Cheongju as a target, it conducted comparison and analysis by dividing building and road which are internal element of a space into the whole city and urbanized area to compare and analyze validity of the theory application and the inside of an actual urban space. For the method of an analysis, it calculated Fractal Dimension by linking a digital map including the property of building and road with GIS program and using box counting. An analysis result showed that the result value of Fractal Dimension by structure and road is all high and similar. It drew a similar result value from the whole Cheongju and the urbanized area as well, but commercial and industrial area showed low result value from the partial viewpoint. However, it is correct to regard these spaces as one space because they are intimately connected with a residential area. From the general viewpoint, it could be said that Cheongju's Fractal Dimension grows in the context of a urbanized area.

  • PDF

MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea (MLP 기반의 서울시 3차원 지반공간모델링 연구)

  • Ji, Yoonsoo;Kim, Han-Saem;Lee, Moon-Gyo;Cho, Hyung-Ik;Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.47-63
    • /
    • 2021
  • Recently, the demand for three-dimensional (3D) underground maps from the perspective of digital twins and the demand for linkage utilization are increasing. However, the vastness of national geotechnical survey data and the uncertainty in applying geostatistical techniques pose challenges in modeling underground regional geotechnical characteristics. In this study, an optimal learning model based on multi-layer perceptron (MLP) was constructed for 3D subsurface lithological and geotechnical classification in Seoul, South Korea. First, the geotechnical layer and 3D spatial coordinates of each borehole dataset in the Seoul area were constructed as a geotechnical database according to a standardized format, and data pre-processing such as correction and normalization of missing values for machine learning was performed. An optimal fitting model was designed through hyperparameter optimization of the MLP model and model performance evaluation, such as precision and accuracy tests. Then, a 3D grid network locally assigning geotechnical layer classification was constructed by applying an MLP-based bet-fitting model for each unit lattice. The constructed 3D geotechnical layer map was evaluated by comparing the results of a geostatistical interpolation technique and the topsoil properties of the geological map.

철도기준점을 이용한 철도중심선형 좌표변환에 관한연구 - 호남고속철도 계획노선을 중심으로 -

  • Moon, Cheung-Kyun;Heo, Joon;Kang, Sang-Du;Kim, Sang-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1141-1151
    • /
    • 2007
  • In this paper through Honam high-speed railroad which is planned with the north and south axis, we will verify the feasibility of the coordinate conversion using railroad control points after regarding current planned-railroad as the linear central axises. From analysis, distortion of Y axis varies 21cm to 40cm diminishing to a gentle straight line, distortion of X axis varies 14cm to 29cm. Through a revision, the deviation value between the coordinates were 6mm to 9mm and it satisfied the allowable error of national geographic information institute which is following ITRF (International Terrestrial Reference Frame) and cadastral boundary survey(10cm). consequently the coordinate conversion is possible using railroad control points as common control points.

  • PDF

Establishment and Application of GIS-Based DongNam Kwon Industry Information System (GIS기반 동남 광역권 산업체 정보시스템 구축 및 활용)

  • Nam, Kwang-Woo;Kwon, Il-Hwa;Park, Jun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • Following the technology developments of traffic network and communication for the wide area, the importance of the cooperation system to vitalize the wide area economy is increasing. Therefore, in this study, DongNam Kwon industry information system is established for the industrial information sharing based on GIS in the DongNam Kwon wide area economy. The DongNam Kwon is an industrial integration area centered with the manufacturing so that the operation of effective industrial cluster and cooperation systems are required across the administrational boundaries. To establish the database of the information, the information system was established utilizing already established industrial databases in Busan, Ulsan and Gyeongnam. But, various issues caused by the discordances among the data of each local government and the insufficiency of GIS based location information have been found. According to the analysis, the standardization considering the courses of collection, distributions and utilization are required immediately to solve the issues. This study establishes an 2-way industrial information system enabling the information creation and the phased approach between the administrator and the user in the bi-directions on the web by utilizing cadastral and numerical maps. The result of this study would have a meaning in providing a fundamental frame for cooperative responses and cooperation system for DongNam Kwon's industrial promotion using industrial information sharing.

Designation of Logical Bicycle Accident Dangerous Zone by Digital Map-Based Accident Characteristics Analysis (디지털 맵 기반 사고특성 분석을 통한 자전거 사고 논리 위험존 설정 연구)

  • Sung, Kwang-mo;Kim, Ki-cheol;Lee, Choul-ki;Kim, Sung-jin;Lee, Jung-uck
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.117-130
    • /
    • 2017
  • Bicycles are leading to serious accidents in the event of a side collision, and it is very important to prevent accidents in advance because it is difficult to actively deal with them in a dangerous situation. As a part of the bicycle safety driving support technology, this study establishes bicycle accidents dangerous zone based on bicycle accident data and road property information of digital map nationwide and provides timely safety information to cyclists. The point selected by using actual accident data was called 'dangerous zone', and the potential accident occurrence point generated by modeling based on this 'dangerous zone' was called 'logical dangerous zone'. As a result of the research on the Designation of Logical Bicycle Accident Dangerous Zone, the regional specificity of the bicycle accident points across the nation was generalized to the form of the logical dangerous zone through the network data.

A Study on the Construction of Indoor Spatial Information using a Terrestrial LiDAR (지상라이다를 이용한 지하철 역사의 3D 실내공간정보 구축방안 연구)

  • Go, Jong Sik;Jeong, In Hun;Shin, Han Sup;Choi, Yun Soo;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.89-101
    • /
    • 2013
  • Recently, importance of indoor space is on the rise, as larger and more complex buildings are taking place due to development of building technology. Accordingly, range of the target area of spatial information service is rapidly expanding from outdoor space to indoor space. Various demands for indoor spatial information are expected to be created in the future through development of high technologies such as IT Mobile and convergence with various area. Thus this research takes a look at available methods for building indoor spatial information and then builds high accuracy three-dimensional indoor spatial information using indoor high accuracy laser survey and 3D vector process technique. The accuracy of built 3D indoor model is evaluated by overlap analysis method refer to a digital map, and the result showed that it could guarantee its positional accuracy within 0.04m on the x-axis, 0.06m on the y-axis. This result could be used as a fundamental data for building indoor spatial data and for integrated use of indoor and outdoor spatial information.

Evaluation System of River Levee Safety Map for Improving River Levee Maintenance Technology (하천제방 유지관리 기술의 고도화를 위한 하천제방 안전도맵 평가체계 제안)

  • Kim, Jin-Man;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.768-777
    • /
    • 2017
  • The efforts to improve river levee maintenance technologies have accelerated globally in a bid to deal with the flood damage resulting from the changes to the climate and flood events. This paper, in line with such tendency, proposes an evaluation system of a river levee safety map to maintain the river levee in an efficient manner. The concept of a river levee safety map is aimed at maximizing the maintenance efficiency for a manager to indicate the safety index, including the current river levee sliding, piping, and visual inspection on a GIS map. To develop such an evaluation system, a safety index covering the sliding, piping, and visual inspection are designated through the data and document examination and the rational guideline to classify each index into three grades, A, B, and C, is proposed. Based on the guideline proposed, the sliding and piping characteristics in terms of safety depending on the change to the flood water level duration time at the test section (Nam river) were evaluated by numerical analysis. As a result, both the protected landside and riverside satisfied the requirements for Grade A in terms of sliding, and when it comes to piping, the grade declined to C because the flood water level duration time increased at R2. As a planning study to propose a river levee safety map evaluation system, a further advanced study, standardization of the river levee data, and improvement of the existing system and laws are required.