• Title/Summary/Keyword: 수축 및 균열

Search Result 223, Processing Time 0.022 seconds

축대칭 PC탱크의 유한요소 해석

  • 이이환;김동언
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.981-986
    • /
    • 1995
  • 이 논문의 목적은 축대칭 프리스트레스트 콘크리트 탱크의 시간의존성 유한요소해석법을 제안하는 것이다. 오늘날 PC구조물은 교량, 포장판, 해상구조물, 원자로 격납구조물, 대규모 액체저장용 탱크 등 여러 형태의 구조물에서 그 사용 예를 쉽게 찾아볼 수 있다. 특히 본 논문에서 고려하고자 하는 압력창기나 액체 저장용 탱크의 경우 유체압력 등의 내부압력에 의해 발생하는 균열은 프리 스트레스를 도입함으로써 매우 효과적으로 제어할 수 있기 때문에 상당히 유리한 구조형식이 된다. 그러니 이러한 구조물의 해석과 설계에 있어서 균열의 예측과 더불어 콘크리트의 크리이프, 건조수축 및 PC강재의 리락세이션 등과 같은 시간 의존성 변형으로 인한 프리스트래스의 손실, 여러 단계의 긴장력을 도입함으로써 발생하는 순간변형인 탄성단축 및 이로 인한 긴장력 감소 등을 정확히 계산하는 일은 매우 복잡하고 어려운 일이다. 본 논문에서는 크리이프, 건조수축 및 리락세이션 등과 같은 시간의존성 변형과 순차적으로 다단계의 프리스트레스 도입으로 인한 순간변형 및 탄성단축의 영향을 고려한 축대칭 PC 탱크 구조물의 시간에 따른 거동 및 긴장력의 변화를 유한요소법을 적용하여 해석할 수 있는 해법체계를 정리하고 이를 전산 프로그램화하여, 축대칭 PC탱크 구조물의 시간 의존성 거동에 대한 보다 정밀한 해석을 수행하였다.

  • PDF

Residual Stress Redistribution and Fatigue Behavior in Weldment (용접재의 잔류응력 재분포와 피로거동)

  • 이용복;정진성
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.20-28
    • /
    • 1997
  • 용접부에는 많은 취약조건들이 존재하며 파괴의 주 원인이 되고 있어 이들에 대한 많은 연구가 진행되고 있다. 따라서, 현재 용접재료, 용접 조건 및 용접방법 등 을 개선함으로써 여러 방면에서 좋은 결과를 얻고 있다. 그러나 아직도 용접시의 열소 성변형과 구속조건에 따라 분포하는 잔류응력에 의한 피로균열거동에 대한 연구는 정확한 잔류응력 측정의 어려움으로 미흡한 상태이다. 특히 잔류응력의 측정기술과 반복하중에 의한 피로균열 진전시 잔류응력의 이완 등은 이들을 해석하는데 많은 어 려움을 주고 있다. 용접시 높은 열에 의한 재료의 팽창과 냉각시의 수축변형은 용접 부재에 인장 및 압축 잔류응력을 유발시키고, 인장잔류응력은 균열 진전될 때 잔류 응력은 오히려 균열을 지연시키기도 한다. 또한 잔류응력장에서 피로 균열이 진전될 때 잔류응력은 일반적으로 작용하중의 크기와 반복 수 그리고 균열 진전 등으로 인하 여 이완되고 재분포된다. 본 해설에서는 용접재의 피로거동중에 발생하는 잔류응력의 재분포 현상을 하중의 범위, 하중 반복수, 균열 진전의 영향으로 구분하여 각각의 영향에 대해서 기술하고자 한다.

  • PDF

Shrinkage Characteristics of 50MPa High-strength Concrete with Compositions of Cementitious Materials (결합재 구성에 따른 50MPa급 고강도 콘크리트의 수축 변형 특성)

  • Jung, Hyung-Chul;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.93-100
    • /
    • 2009
  • This study forms part of a research project that was carried out on the development and application of high-strength concrete for large underground spaces. In order to develop 50MPa high-strength concrete, eight optimal mixtures with different portions of fly ash and ground granulated blast furnace slag were selected. For assessments of shrinkage characteristics, free shrinkage tests with prismatic specimens and shrinkage crack tests were performed. The compressive strength was more than 30MPa at 7days, and stable design strength was acquired at 28days. High-strength concrete containing blast furnace slag shows large autogenous shrinkage, while large shrinkage deformations and cracks will occur when mixtures are replaced with large volumes of cementitious materials. Hence, for these high-strength concrete mixtures, the curing conditions of initial ages that affect the reaction of hydration and drying effects need to be checked.

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

Corrosion Induced Long Term Crack Width Prediction for Structural Concrete Members (철근콘크리트 부재에서 철근 부식을 고려한 장기 균열폭 예측)

  • Lee, Gi-Yeol;Yang, Jun-Ho;Chung, Won-Yong;Rho, Sam-Young;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.199-200
    • /
    • 2009
  • This research developed a long-term crack width prediction model based on bond characteristics that considered steel corrosion, concrete shrinkage and creep in cracking stabilized structural concrete members.

  • PDF

The Development of Cement Treated Base Material with Restraint Reflection Crack (반사균열을 억제한 시멘트 안정처리 기층 재료개발)

  • Kang, Sung-Cheul;Lee, Kang-Won;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.33-43
    • /
    • 2005
  • This paper describes a new approach to minimize the amount of shrinkage cracking in cement treated base(CTB). CTB is a stiffness base having lots of merits such as higher rutting resistance, minimizing fatigue cracking, and the ability to distribute upper loads. However, It is not applied to asphalt pavement system in Korea because of possible cracks caused by dry shrinkage. The goal of this study is the development of cement treated base with lower shrinkage for preventing reflection cracks and rutting. After identifying factors affecting dry shrinkage and analyzing mechanism of each admixture, the laboratory and field tests were designed and performed. Through the preliminary tests, the mix design containing 25 percent o( fly ash and 7 percent of cement was suggested. This mix design was satisfied with strength for Korea specification standard. According to the results considering strength, shrinkage, and economical efficiency, two mix designs were selected; 1) containing 25 percent of fly ash and 2) containing 25 percent of fly ash with 10 percent of expensive additive. For field test based on the result of laboratory test, the optimized alternative in cement treated base with lower shrinkage was the mix design containing 25 percent of fly ash with 10 percent of expansive additive.

  • PDF

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature (고온에서 하이브리드 섬유보강 콘크리트의 성능)

  • Won, Jong-Pil;Park, Kyung-Hoon;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.325-333
    • /
    • 2008
  • This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

Enhanced Durability Performance of High Early Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 내구성능 향상에 관한 연구)

  • 원종필;김현호;안태송
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.362-370
    • /
    • 2001
  • The internal or external restraint of thermal and dry shrinkage movements could thus generate tensile stresses in concrete pavement for early traffic opening. Restrained shrinkage and thermal stresses could produce microcracks in concrete which increase its permeability and accelerate its long-term deterioration under weathering and load effects. Fiber reinforced concrete is an effective approach to the control of microcrack and crack development under tensile stresses. This study aims at evaluation of the durability of high early strength concrete for early traffic opening and increase of service life. Three different types of regulated-set cement which recently has been used much in Korea were adopted. Fibers were added and their mixtures were compared with plain high early strength concrete mixture. The use of fibers increased durability performance of high early strength concrete using regulated-set cement than the corresponding plain mixtures.

Effect of the Kind of Modified Bubble Sheets on the Temperature Profiles and Crack Reduction of the Concrete under Hot Weather (표면개량 버블시트 종류 변화가 서중환경 콘크리트의 온도 및 균열발생에 미치는 영향)

  • Lee, Sang-Woon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2018
  • There are various quality deteriorations of concrete such as plastic, drying shrinkage due to abrupt moisture evaporation, slump loss and cold joint under hot weather condition. To protect from above deteriorations, several kinds of modified bubble sheets have been applied to secure heat insulation performance. But, there is not enough application cases of bubble sheets at job site under hot weather condition. The objective of the paper is to investigate the temperature profile and crack occurrence of the concrete covered with five different kinds of surface curing sheets, which is placed under hot weather condition. Single layer transparent bubble sheet, white colored bubble sheet, aluminum metalizing bubble sheet and PE film are adopted for surface curing sheets. Test results indicated that application of aluminum metalizing bubble sheet had most favorable effect on the reduction of on temperature rise and on the crack reduction of concrete. But due to larger reflection of light by aluminum, it brings about visual pollution to the workers. Hence, the application of white colored bubble sheet can be the most desirable alternative to protect the concrete from hot weather in the field.