• Title/Summary/Keyword: 수질 변동

Search Result 559, Processing Time 0.029 seconds

Changes in Aquatic Insect Community Structure in Wonju Stream based on a Comparison of Previous Studies (과거 문헌 비교를 통한 원주천 수서곤충 군집구조 변화)

  • Han, Jung Soo;Choi, Jun Kil;Won, Kyung Ho;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.400-411
    • /
    • 2018
  • This study was a survey of the Wonju stream in Wonju city from May 2015 to September 2016. A total of three sites were selected from the upstream area Gwanseol-dong to the downstream area Hojeo-myeon. Physicochemical analysis, aquatic insect changes, cluster analysis, functional group analysis, rarefaction curve, and statistical analysis were compared between 2004 and 2016. A total of 19 species (38.78%) in 2004 and 22 species (36.67%) in 2016 were analyzed, with the largest number belonging to ephemeroptera. The individual ratio ranged from 27,759.2 (ind. $m^{-2}$, 84.30%) in 2004 to 4,573.2 (ind. $m^{-2}$, 41.64%) in 2016, with the highest number involving diptera. As a result of the community analysis, significant differences were detected in the indices of dominance, diversity, evenness, and richness in 2004 and 2016 (p<0.05). Burrowers of the habitat orientation groups showed the greatest variation with an average of -68.00% (${\pm}2.15$) and the collector-gatherers of the functional feeding groups showed the highest variation of -40.12% (${\pm}1.77$). The rarefaction curve analysis suggested that the species was the poorest in the midstream regions in 2004 and 2016. Physical factors and water quality showed a significant correlation with diversity index, evenness index, and the number of individuals. MDS analysis of the similarity of upstream and downstream regions was high in 2004, and low in 2016. The differences were attributed to physicochemical changes such as increase in flow velocity due to improvement of small dams and changes in bottom structure.

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF

Winter Algal Bloom and Spatial Characteristics of Water Quality in the Lower Taewha River, Ulsan, Korea (태화강 하류에서 겨울철 조류 발생과 수질의 공간적 특성)

  • Sohn, Eun Rak;Park, Jung Im;Lee, Bora;Lee, Jin Woo;Kim, Jongseol
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • This study was carried out to assess the spatial and tidal effects on the water quality in the lower reaches of Taewha River, Ulsan, Korea and to understand the environmental factors affecting winter algal bloom in the river. From May, 2010 to January, 2011, water samples were collected at five locations (New Samho Bridge, Old Samho Bridge, Mungjung Stream, Taewha Bridge, and Mungchon Bridge) along the river at high and low tides of spring tide. We measured environmental parameters including salinity, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), chlorophyll a (Chl a) and various nutrient concentrations. Salinity increased towards the downstream direction. Average values of Chl a concentrations ranged $10-26mg/m^3$ at high tide and $11-53mg/m^3$ at low tide depending on sampling locations. It was noteworthy that there were strong increases in Chl a concentrations during the November 21 to December 22 sampling period especially at the Taewha Bridge. At the location, Chl a concentrations were measured as $138-296mg/m^3$ for the period; Rhodomonas lacustris of class Cryptophyceae was the dominant algal species. Chl a concentrations at the Taewha Bridge were positively correlated with such parameters as salinity, BOD, DO, COD, pH, and T-N, and negatively correlated with temperature and $NO_3{^-}$-N. On the other hand, at the Mungchon Bridge the highest concentration of Chl a was $55mg/m^3$ on August 25, and Chl a concentrations were positively correlated with $NH_3$-N, T-N, $PO_4{^{3-}}$-P, T-P, and heterotrophic plate counts. The results suggested that water quality in the lower Taewha River fluctuated a lot with the sampling locations and the patterns of algal blooms were different between Taewha Bridge and Mungchon Bridge sampling locations.

Developments of Water Treatment System by Biological Fluidized Bed for Water Reuse Aquaculture (생물학적 유동층을 이용한 어류양식 순환수의 처리씨스템 개발)

  • LEE Ki-Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.380-391
    • /
    • 1993
  • The experimental study was made to propose the treatment method of wastewater in the high-density fish culture system. The BOD to COD ratios of effluents were almost same to 0.65 in the eel-farm, but were various in the farm rearing together with tilapia etc. A BOD rate curve of the eel-farm effluent could be described mathematically by the equation, $BODu=14.1(1-10^{-0.222t})+30.9(1-10^{-0.035(t-8)})$. Nitrification in Biological Fluidized Bed(BFB) system to treat the fish-farm wastewater could be reduce ammonium level up to $65{\sim}79\%$ when ammonium loading rates were between 0.014 and 0.075g $NH_4/g$ BVS-day. Nitrification efficiency was decreased by organic matters in the wastewater when ammonium loading was low(0.014 g $NH_4/g$ BVS-day). T-N removal ratios were decreased to increase loading in denitrification process, because of low C/N ratio. Based on much higher biological mass concentrations, BFB system takes many advantages of a practical viewpoint, such as stability of treatment efficiency and reduction of necessary site area for the facility, as compared with conventional treatment systems.

  • PDF

A Hydrodynamic Modeling Study to Analyze the Water Plume and Mixing Pattern of the Lake Euiam (의암호 수체 흐름과 혼합 패턴에 관한 모델 연구)

  • Park, Seongwon;Lee, Hye Won;Lee, Yong Seok;Park, Seok Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.488-498
    • /
    • 2013
  • A three-dimensional hydrodynamic model was applied to the Lake Euiam. The lake has three inflows, of which Gongji Stream has the smallest flow rate and poorest water. The dam-storage volume, watershed area, lake shape and discharge type of the Chuncheon Dam and the Soyang Dam are different. Therefore, it is difficult to analyze the water plume and mixing pattern due to the difference of the two dams regarding the amount of outflow and water temperature. In this study, we analyzed the effects of different characteristics on temperature and conductivity using the model appropriate for the Lake Euiam. We selected an integrated system supporting 3-D time varying modeling (GEMSS) to represent large temporal and spatial variations in hydrodynamics and transport of the Lake Euiam. The model represents the water temperature and hydrodynamics in the lake reasonably well. We examined residence time and spreading patterns of the incoming flows in the lake based on the results of the validated model. The results of the water temperature and conductivity distribution indicated that characteristics of upstream dams greatly influence Lake Euiam. In this study, the three-dimensional time variable water quality model successfully simulated the temporal and spatial variations of the hydrodynamics in the Lake Euiam. The model may be used for efficient water quality management.

Changes of Seasonal and Vertical Water Quality in Soyang and Paldang River-reservoir System, Korea (소양호와 팔당호 수질의 수직 및 계절적 변화)

  • Kim, Jong-Min;Park, Jun-Dae;Noh, Hye-Ran;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.10-20
    • /
    • 2002
  • Changes of seasonal and vertical water quality was analyzed with physico-chemical data from Soyang and Paldang river-reservoir system in Korea during the 1996 to 1998. In Soyang river-reservoir system, the water column was well stratified, which narrow epilimnion layer of 5 to 10 m depth in spring to summer enlarged gradually about 40 m depth in fall as going to times. In contrast, metalimnion layer tended to be narrow during the same period. Water temperature of hypolimnion was maintained about $5^{\circ}C$ continuously throughout the year. DO of the epilimnion layer was supersaturated from spring to summer, however, it was decreased to 75% at the epilimnion layer and $45{\sim}50%$ at the hypolimnion layer at the late fall. The lowest conductivity of below $50\;{\mu}S/cm$ was observed at the metalimnion layer during thesummer to fall. In Paldang river-reservoir system, the water column wag well mixed layer throughout the year, although water temperature was changed seasonally from $5^{\circ}C$ in February to $28^{\circ}C$ in July. Water temperature between upper and lower layer was different about $5^{\circ}C$ from late spring (May) to early fall (September). DO was over and less saturated in upper and lower layer during the early summer to early fall, respectively. Conductivity was decreased to $90\;{\mu}S/cm$ in lower layer of below $4{\sim}5\;m$ depth during the late spring to early fall and that of upper layer of above 10 m depth decreased to about $100\;{\mu}S/cm$ during the late fall (November) and early spring (March). Retention time of Soyang river-reservoir system was much longer than that of Paldang river-reservoir system. Chlorophyll a, T-N and T-P concentration in Paldang river-reservoir system were higher than that of Soyang river-reservoir system by a factor of 2.7, 1.2 and 2.6, respectively. Algal blooming was deeply affected by the nutrients than the retention time.

Variations and Characters of Water Quality during Flood and Dry Seasons in the Eastern Coast of South Sea, Korea (한국 남해 동부 연안 해역에서 홍수기와 갈수기 동안 수질환경 특성과 변동)

  • Jeong, Do Hyeon;Shin, Hyeon Ho;Jung, Seung Won;Lim, Dhong Il
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • Physiochemical characters of sea waters during summer flood- and winter dry-seasons and their spatial variations were investigated along the coastal area off the eastern South Sea, Korea. Using the hierarchical clustering method, in this study, we present comprehensive analyses of coastal waters masses and their seasonal variations. The results revealed that the coastal water of the study area was classified into six water masses (A to F). During summer season, the surface water was mainly occupied by the coastal pseudo-estuarine water (water mass B) with low salinity and high nutrients and the river-dominated coastal water (water mass C) with low nutrients, respectively. The bottom water was dominated by cold water (water mass D) with very low temperature, high salinity and high nutrients, compared to masses of surface water. Notably, the water mass B, with high concentrations of nutrients (silicate and nitrogen) and low salinity, which is strongly controlled by the water quality of river freshwater, seems to play an important role in controlling the water quality and further regulating physical processes on ecosystem in the eastern coastal area of South Sea. The water mass D (bottom cold water) coupled with a strong thermocline, which exists in near-bottom layer along the western margin of Korea Strait, has a low temperature, pH and DO, but abundant nutrients. This water mass disappears in winter owing to strong vertical mixing, and subsequently may act as a pool for nutrients during winter dry-season. On the other hand, vertically well-mixed water column during the winter season was typically occupied by the Tsushima (water mass E) and the coastal water (water mass F) with a development of coastal front formed in a transition zone between them. These winter water masses were characterized by low nutrient concentration and balance in N/P ratio, compared with summer season with high nutrient concentrations and strong N-limitation. Accordingly, the analysis of water masses will help one to better chemical and biological processes in coastal area. In most of the study area, characteristically, the growth of phytoplankton community is limited by nitrogen, which is clearly different with coastal environment of West Sea of Korea, with a relative lack of phosphorus. It showed the western and the southern coasts in Korea are substantially different from each other in environmental and ecological characteristics.

Temporal and Spatial Distributions of Basic Water Quality in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역에서 기초수질의 시공간적 분포특성)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Oh, Young-Taek;Heo, Woo-Myoung;Lee, Yun-Kyoung;Park, Yong-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.206-215
    • /
    • 2008
  • Temporal and spatial distributions of salinity, temperature, dissolved oxygen (DO), and turbidity were investigated at seven sites in the upper regions of brackish Lake Sihwa with a limited water exchange, from March to October 2005. During the study period, salinity and temperature varied $0.1{\sim}29.9\;psu$ and $4.7{\sim}28.1^{\circ}C$, respectively, depending on seasons and sites sampled. A distinct halocline profile showing the maximum density gradient (difference over $20\;psu\;m^{-1}$ between surface and bottom layers) was observed during the rainy season, due to the decrease of salinity in surface layers by freshwater inflow. This result implies that rainfall event is the important factor forming the halocline. On the other hand, the depth and location of haloeline varied with the amount of seawater through the sluice gates and the operation systems (inflow or outflow). High DO (over 300% saturation) was observed at surface layer above the halocline in April when red tide occurred, whereas low DO (below 20% saturation) was at the bottom layer below the halocline in the rainy season. Turbidity ranged $1.5{\sim}80.3\;NTU$ showing the maximum turbidity at the layers above or upper the halocline. As a result, the distributions of DO and turbidity in the upper regions of brackish Lake Sihwa were largely affected by the variation of salinity. Also, when the halocline was formed, the water quality between upper and lower water layers may be expected completely different. This study suggests that the physicochemical characteristics of water in the brackish regions are closely associated with the causes of eutrophication such as red tide and DO deficit.

Temporal Dynamics of Water Quality in Junam Reservoir, as a Nest of Migratory Birds (철새도래지인 주남저수지의 계절적 수질변동)

  • Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.9-18
    • /
    • 2009
  • The objectives of this study were to evaluate seasonal and interannual variations of water quality and nutrient input (N, P) in Junam Reservoir, a nesting waterbody of migratory birds, over 10 years during 1998$\sim$2007 along with dynamic relations of trophic parameters using empirical models. Concentrations of COD averaged 7.8 mg $L^{-1}$ during the study, while TN and TP were $1.4\;mg\;L^{-1}$ and $83{\mu}g\;L^{-1}$, respectively, indicating an eutrophic-hypereutrophic state. Values of monthly COD had strong positive relations (r=0.669, p<0.001) with conductivity, indicating that summer rainfall resulted in an ionic dilution of the reservoir water by rainwater and contributed better water quality. One-way ANOVA tests showed significant differences (F=$5.2{\sim}12.9$, p<0.05) in TN and TP between the before and after the bird migration. In other words, nutrient levels were greater in the absence of migratory birds than in the presence of the migratory birds, suggesting a no-effect on nutrient inputs by the birds. Also, one-way ANOVA indicated no significant differences (F=$0.37{\sim}0.48$, p>0.05) in $NO_{3^-}N$ and $NH_{3^-}N$ between the before and after the birds migration. Linear empirical models using trophic parameters showed that algal biomass as CHL, had significant low correlations with TN ($R^2$=0.143, p<0.001, n=119) and TP ($R^2$=0.192, p<0.001, n=119). These results suggest that influences of nutrients on the CHL were evident, but the effect was weak. This fact was supported by analysis of Trophic State Index Deviation (TSID). Over 70% in the observed values of "TSI (CHL)-TSI (SD)" and "TSI (CHL)-TSI (TP)" were less than zero, suggesting a light limitation on the CHL by inorganic suspended solids.

Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River(Nakdong) (낙동강 8개 보에서 기상수문·기초수질 및 우점조류의 시공간 종적 변동성)

  • Shin, Jae-Ki;Park, Yongeun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.268-286
    • /
    • 2018
  • The eutrophication and algal blooms by harmful cyanobacteria (CyanoHAs) and freshwater redtide (FRT) that severely experiencing in typical regulated weir system of the Nakdong River are one of the most rapidly expanding water quality problems in Korea and worldwide. To compare with the factors of rainfall, hydrology, and dominant algae, this study explored spatiotemporal variability of the major water environmental factors by weekly intervals in eight weir pools of the Nakdong River from January 2013 to July 2017. There was a distinct difference in rainfall distribution between upstream and downstream regions. Outflow discharge using small-scale hydropower generation, overflow and fish-ways accounted for 37.4%, 60.1% and 2.5%, respectively. Excluding the flood season, the outflow was mainly due to the hydropower release through year-round. These have been associated with the drawdown of water level, water exchange rate, and the significant impact on change of dominant algae. The mean concentration (maximum value) of chlorophyll-a was $17.6mg\;m^{-3}$ ($98.2mg\;m^{-3}$) in the SAJ~GAJ and $29.6mg\;m^{-3}$ ($193.6mg\;m^{-3}$) in the DAS~HAA weir pools reaches, respectively. It has increased significantly in the downstream part where the influence of treated wastewater effluents (TWEs) is high. Indeed, very high values (>50 or $>100mg\;m^{-3}$) of chlorophyll-a concentration were observed at low flow rates and water levels. Algal assemblages that caused the blooms of CyanoHAs and FRT were the cyanobacteria Microcystis and the diatom Stephanodiscus populations, respectively. In conclusion, appropriate hydrological management practices in terms of each weir pool may need to be developed.