• Title/Summary/Keyword: 수직 유동

Search Result 588, Processing Time 0.025 seconds

The Heat Transfer Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System (중온 태양열 축열조용 히트파이프의 열이송 성능)

  • Park, Min Kyu;Lee, Jung Ryun;Boo, Joon Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.69-69
    • /
    • 2011
  • 태양열 발전 플랜트에 사용되는 중고온 범위의 축열조에 고체-액체간 상변화를 수행하는 용융염을 축열물질로 사용하면 액체상 또는 고체상만으로 된 열저장 매체에 비해 축열조의 규모를 축소함과 동시에 축열온도의 균일성 향상에 기여할 수 있다. 중온인 $250{\sim}400^{\circ}C$ 범위에서 이용 가능한 용융염으로는 질산칼륨($KNO_3$), 질산리튬($LiNO_3$)등이 있다. 그러나 이러한 용융염의 가장 큰 단점은 열전도율이 매우 낮다는 것이며, 이로 인해 요구되는 열전달률을 성취하기 위해서는 많은 열접촉면적이 필요하다는 것이다. 이러한 단점을 극복하는 방법을 도입하지 않고서는 축열시스템의 소규화를 성취하는데 큰 효과를 가져올 수 없다. 한편 열수송 성능이 탁월한 히트파이프를 사용하면 열원 및 열침과 축열물질 사이의 열전달 효율을 증가시켜 시스템의 성능 향상과 동시에 소규모화에 기여할 수 있다. 중온 범위 히트파이프의 작동유체로서 다우섬-A(Dowtherm-A)는 $150^{\circ}C$이상 $400^{\circ}C$까지의 범위에서 소수에 불과한 선택적 대안 중 하나이다. 따라서 본 연구에서는 용융염을 사용하는 중온 태양열축열조에 적용 가능한 다우섬-A 히트파이프의 성능을 파악하여 기술적 자료를 제시하고자 하였다. 열원으로는 고온 고압의 과열증기, 그리고 열침으로는 중온의 포화증기를 고려하였다. 용융염 축열조를 수직으로 관통하는 히트파이프는 하단부에서 열원 증기와 열교환 가능하며, 중앙부에서 축열물질과 열교환하고, 상단부에서는 중온 증기와 접촉할 수 있도록 배치하였다. 축열모드에서는 히트파이프의 하단부가 증발부로 작동하고, 중앙부가 응축부로 작동하여 용융염으로 열을 방출하면 용융염의 온도가 상승하고 용융점에 도달하면 액상으로의 상변화가 진행되면서 축열이 활성화된다. 축열모드에서 히트파이프의 상단부는 단열부로 작동한다. 방열과정에서는 히트파이프의 하단부가 단열된 상태이고, 중앙부는 용융염으로부터 열을 받아 증발부로 작동하며, 상단부는 중온 증기로 열을 방출하므로 응축부로 작동한다. 즉, 축열시스템의 작동모드에 따라 하나의 히트파이프에서 증발부, 응축부, 단열부의 위치가 변하게 된다. 특히, 히트파이프의 중앙 부분이 응축부에서 증발부로 전환될 때에도 작동이 보장되려면 내부 작동유체의 연속적인 재순환이 가능해야 하므로, 일반 히트파이프에서와는 달리 초기 작동액체의 충전량을 증발부 전체의 체적보다 더 많이 과충전해야 한다. 이러한 히트파이프의 성능 파악을 위한 실험에서 고려한 변수들은 열부하, 작동액체의 충전률, 작동온도 등이며, 열수송 성능의 지표로서는 유효열전도율과 열저항을 이용하였다. 중온범위에서 적정한 작동온도를 성취하기 위해 실험에서는 전압 조절기로 열부하를 조절하는 동시에 항온조로 응축부의 냉각수 입구 온도를 제어하였다. 하나의 히트파이프에 대해서 최대 1 kW까지의 열부하에서 냉각수 입구 온도를 $40^{\circ}C$에서 $80^{\circ}C$ 범위로 변화시키면 히트파이프 작동온도를 약 $250^{\circ}C$ 내외로 조절 가능하였다. 히트파이프 작동액체 충전률은 윅구조물의 공극 체적을 기준으로 372%에서 420%까지 변화 시켰다. 실험 결과를 토대로 열저항과 유효 열전도율을 각각 입력 열유속, 작동온도, 작동액체 충전률 등의 함수로 제시했다. 동일한 냉각수 온도에서는 충전률이 높을수록 히트파이프의 작동온도가 감소하였다. 열저항 값의 범위는 최소 $0.12^{\circ}C/W$에서 최대 $0.15^{\circ}C/W$까지로 나타났으며 유효 열전도율의 값은 최소 $7,703W/m{\cdot}K$에서 최대 $8,890W/m{\cdot}K$까지 변화했다. 최소 열저항은 충전률 420%인 경우에 나타났는데 이때의 작동온도는 약 $262^{\circ}C$이었다. 히트파이프의 작동한계로서 드라이아웃(dry-out)은 충전률 372%의 경우에 열부하 950 W에서 발생하였으나, 그 이상의 충전률에서는 열부하 1060 W까지 작동한계 발생이 관찰되지 않았다. 실험 결과 본 연구에서의 히트파이프는 중온 태양열 축열조에 적용되어 개당 약 1 kW의 열부하를 이송하면서 축열물질 및 축방열 대상 유동매체와 열교환을 하는데 사용하는데 충분할 것이라 판단된다.

  • PDF

The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test (균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교)

  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.39-53
    • /
    • 2007
  • Generally, fractured medium can be described with some key parameters, such as hydraulic conductivities or random field of hydraulic conductivities (continuum model), spatial and statistical distribution of permeable fractures (discrete fracture network model). Investigating the practical applicability of the well-known conceptual models for the description of groundwater flow in fractured media, various types of hydraulic tests were applied to studies on the highly fractured media in Geumsan, Korea. Results from single-hole packer test show that the horizontal hydraulic conductivities in the permeable media are between $7.67{\times}10^{-10}{\sim}3.16{\times}10^{-6}$ m/sec, with $7.70{\times}10^{-7}$ m/sec arithmetic mean and $2.16{\times}10^{-7}$ m/sec geometric mean. Total number of test interval is 110 at 8 holes. The number of completely impermeable interval is 9, and the low permeable interval - below $1.0{\times}10^{-8}$ m/sec is 14. In other words, most of test intervals are permeable. The vertical distribution of hydraulic conductivities shows apparently the good correlation with the results of flowmeter test. But the results from the cross-hole test show some different features. The results from the cross-hole test are highly related to the connectivity and/or the binary properties of fractured media; permeable and impermeable. From the viewpoint of the connection, the application of the general stochastic approach with a single continuum model may not be appropriate even in the moderately or highly permeable fractured medium. Then, further studies on the investigation method and the analysis procedures should be required for the reasonable and practical design of the conceptual model, with which the binary properties, including permeable/impermeable features, can be described.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Resolution of Shallow Marine Subsuface Structure Image Associated with Acquisition Parameters of High-resolution Multi-channel Seismic Data (고해상 다중채널 탄성파탐사 자료취득변수에 따른 천부 해저지층영상의 해상도)

  • Lee Ho-Young;Koo Nam-Hyung;Park Keun-Pil;Yoo Dong-Geun;Kang Dong-Hyo;Kim Young-Gun;Seo Gab-Seok;Hwang Kyu-Duk;Kim Jong-Chon;Kim Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.126-133
    • /
    • 2003
  • High-resolution shallow marine seismic surveys have been carried out for the resources exploration, engineering applications and Quaternary mapping. To improve the resolution of subsurface structure image, multichannel digital technique has been applied. The quality of the image depends on the vertical and horizontal resolution and signal to noise (S/N) ratio which are associated with the data acquisition parameters such as sample interval, common midpoint (CMP) interval and CMP fold. To understand the effect of the acquisition parameters, a test survey was carried out off Yeosu and the acquired data were analyzed. A 30 $in^3$ small air gun was used as a seismic source and 8 channel streamer cable with a 5 m group interval was used as a receiver. The data were digitally recorded with a shot interval of 2 s and sample interval of 0.1 ms. The acquired data were resampled with various sample intervals, CMP intervals and CMP folds. The resampled data were processed, plotted as seismic sections and compared each other. The analysis results show that thin bed structure with ${\~}1m$ thickness and ${\~}6^{\circ}$ slope can be imaged with good resolution and continuity and low noise using the acquisition parameters with a sample interval shorter than 0.2 ms, CMP interval shorter than 2.5 m and CMP fold more than 4. Because seismic resolution is associated with the acquisition parameters, the quality of the subsurface structure can be imaged successfully using suitable and optimum acquisition parameters.

Usefulness of Rotation for Toric Soft Lenses Using Objective Refraction (타각적 굴절검사를 이용한 토릭 소프트 렌즈 회전 평가의 유용성)

  • Yu, Dong-Sik;Moon, Byeong-Yeon;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2011
  • Purpose: The clinical usefulness of rotation evaluation using objective refraction in toric soft lenses fitting was investigated. Methods: Toric soft lenses were fitted for 32 subjects (64 eyes; mean age of 24.69 ${\pm}$ 1.65 years) with astigmatism and both eyes of each subject were fitted with toric soft lenses. Objective refraction-based lenses rotation was evaluated from refraction and over-refraction data by indirect calculating technique. These calculated data were compared with the measured data from slit lamp with direct measuring technique. Results: Orientation of toric soft lenses around zero position (within ${\pm}$ 5$^{\circ}$ vertical line) was investigated. The orientations to the direction of nose of measured and calculated values were 69.78% and 63.64%, respectively, which showed similar values between two techniques. Agreement frequency between measured and calculated values in the magnitude of lenses rotation 54.69% and 82.82% for 10$^{\circ}$ and 20$^{\circ}$ of vertical line, respectively. The 95% limits of agreement between calculation and measurement were from -10.08$^{\circ}$ to 12.65$^{\circ}$, and mean difference was 1.29$^{\circ}$ within ${\pm}$ 10$^{\circ}$. The result showed there was no significant difference (p = 0.1984) and high correlation (r = 0.56, p = 0.0004) between two techniques. But the 95% limits of agreement was widen in ${\pm}$ 20$^{\circ}$ of vertical line. The magnitude of lens rotation between two methods was 9.66 ${\pm}$ 6.16$^{\circ}$, 16.17 ${\pm}$ 12.38$^{\circ}$ and 10.58 ${\pm}$ 12.02$^{\circ}$ for normal, loose and tight fitted conditions. Conclusions: From the results with smaller difference between two techniques, it was found that higher availability of subjective over-refraction data can be used as a supplementary tool for subjective refraction. An application using objective refraction with direct measuring could be provide high success in prescription on toric soft lenses.

Study on Effect of Convection Current Aeration System on Mixing Characteristics and Water Quality of Reservoir (대류식 순환장치의 저수지수체 유동특성 및 수질영향)

  • Lee, Yo-Sang;Lee, Kwang-Man;Koh, Deok-Koo;Yum, Kyung-Taek
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This study examines the operational effectiveness of a Convection Current Aeration System (CCAS) in reservoir. CCAS was run from June, 2008 when the thermocline begun forming in the reservoir. This paper reviews the influence of stratification, dissolved oxygen dynamics and temperature in the lake's natural state from June to October 2008. The survey was done on a week basis. Upwelling flow effects a radius of $7{\sim}10m$ at a surface directly and was irrelevant to the strength of thermocline. On the other hand, it was affected the number of working days, and strength of thermocline at vertical profiles of the reservoir. Longer CCAS run, the deeper was the vertical direct flow area. However it didn't break the thermocline during summer season of 2008. The operating efficiency of the CCAS in the reservoir depends on hydraulics and meteological conditions. Computational Fluid Dynamics (CFD) is a very useful tool for evaluating the operating efficiency of fluid dynamics. The geometry for CFD simulation consists of a cylindrical vessel 25 m radius and 40 m height. The CCAS is located in center of domain. The non-uniform tetrahedral meshes had a bulk of the geometry. The meshes ranged from the coarse to the very fine. This is attributed to the cold water flowing into the downcomer and rising, creating a horizontal flow to the top of the CCAS. The result of CFD demonstrate a closer agreement with surveyed data for temperature and flow velocity. Theoretical dispersion volume were calculated at 8m depth, 120 m diameter working for 30 days and 10 m depth, 130 m diameter working for 50 days.

Study on the Ventilation System Applicability of High-rise Hog Building for Growing-fattening (고상식 육성비육돈사에 적합한 환기시스템에 관한 연구)

  • Yoo, Yong-Hee;Song, Jun-Ik;Choi, Dong-Yoon;Chung, Eui-Soo;Jeon, Kyoung-Ho;Lee, Poong-Yeon;Kim, Sang-Woo;Jeung, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • The goal of this study was to develop a suitable ventilation system for high-rise hog building (HRHB) for growing-fattening with combined slatted floor pen in second story and in situ manure management system in Korea. The HRHB was constructed as 29m long, 9m wide and 7.6m high for outer dimension with an indoor height of 3.1m and 2.4 for lower and upper floor, respectively. Ventilation systems for each treatment were installed in separated rooms of HRHB. The ventilation types installed in each room were following 3 types: ventilation type 1 (V1), where air was pulled through a circular duct inlet and exhausted by fans; ventilation type 2 (V2), where air was pulled through eave inlet (side ceiling inlet) and exhausted by fans; and ventilation type 3 (V3), where air was pulled through baffled ceiling inlet and exhausted by fans. For each ventilation system, investigated air velocity under minimum, medium and maximum ventilation ratio and air flow pattern inside. The results were as follows; For air flow pattern from top to bottom, V1 showed a homogeneous vertical type, V2 showed a bilateral symmetry type and V3 showed an vertical umbrella type. Under minimum ventilation ratio, air velocity in upper floor (80cm above the slated floor) was similar for V1, V2, and V3. Under maximum ventilation ratio, air velocity in upper floor was undeviating for V1 (0.10~0.26m/s) and varied for V2 (0.12~0.63m/s) while those for V3 was relatively slow and less varied (0.07~0.15m/s). In conclusion, Duct inlet type (V1) can be applied to the development of a new HRHB with additional evaluations such as field test hog feeding.

Storyboard of Immortal Land in Gugok-Wonlim - A Special Reference to Goisan - (구곡원림(九曲園林)에서 찾는 신선경(神仙境)의 경관 스토리보드 - 괴산 갈은구곡(葛隱九曲)을 대상으로 -)

  • Rho, Jae-Hyun;Park, Joo-Sung;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.90-104
    • /
    • 2011
  • This study identified the scenic characteristics in Gugok and symbolism reflected in titles of the scenery of the season in Gugok from a perspective of Sundoism concentrated on Galeun Gugok in Goisan which is influenced most greatly by Sundoism hermit ideas in Korea, along with Seonyudong-Gugok. In addition, it suggested a measure for arrangement and narrative Storyboard of Galeun Gugok structure corresponding with promotion and propagation of Gugok cultural scenes and educational goals. According to analysis and interpretation of the various Gugoks forming Galeun Gugok in terms of their titles, names engraved in surrounding elements and the coherent symbolic meanings of its scenery and place through comparison with secenery of near Seonyudong-Gugok, the result shows that Galeun Gugok comprises wishes for eternal life in the forms of Taoist hermit-related scenery of the season within the range of stream and old stories based on environmental affordance. In figurative way, it ultimately presents the Wonyung(圓融) idea which seeks a harmonious combination of God and humankind. In particular, consciousness of longevity without problems is deeply inherent in the background of eternalness of plants, divinity of animals and natural homeostasis. Also, 9 Gok Seongukam set up at visual terminal reflect noticeably that a game Go is the amusement of the immortals, which describe 9 ranks of GO figuratively. Galeun Gugok is formed in a unity structure, which is hermit-oriented Sundoism and motif, such as longevity and immortality, divinity and enjoyment of Sundoism hermit rather than used as a method to achieve taste for the arts or ethics. Given the fact, it presents eternal longevity and atmosphere of seclusion in very strong way. Development of spatial Storyboard structure based on this is interpreted as 'Entering the world of hermits(Introduction)'-'Looking the world(Development)'-'Living with hermits(Turn)'-'Becoming hermit(Conclusion).' Finally, the scenery image of Galeun Gugok presented in surface structure is based on beauty of the immortal land scenery as well as beauty of pre-achieved space in Gugokdongcheon and arranged the vertical narrative structure as divine space of 9 ranks of GO. Taking those into account, scenery story board of Galeun Gugok was suggested in accordance with a theme of 6 cuts; Gnagsun(降仙)-Sungyeong(仙境)- Sunyak(仙藥)-Sunhak(仙鶴)-Sunyu(仙遊)-Eunsun(隱仙). It is obvious that hermit which live an eternal life as a representative of Sundoism, should be the main motif of scenery planning in a filed of modem landscaping. Therefore, the most valuable component in designing Korean landscape must be the homeostasis of surrounding landscape which supports the characteristics of invariability and divinity of nature.