• Title/Summary/Keyword: 수직 온도구배

Search Result 43, Processing Time 0.029 seconds

Mechanical Isolation Method for an Air Intake Duct with Vertical Temperature Gradient (수직 온도구배를 갖는 공기 흡입 덕트의 기계적 격리기법)

  • Jung, Chihoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2016
  • In a Direct Connect(DC) mode altitude engine test, a labyrinth seal is set up between an air intake duct and an engine. The labyrinth seal plays a key role in mechanically isolating them, which contributes to the accurate measurement of thrust and the other component forces. However, when high vertical temperature gradient is generated in the supplied air in the duct, the isolation breaks down. In this paper, a labyrinth seal control device is designed and installed in an effort to eliminate the issue. Test result shows the device successfully gets rid of the contact problem even when high vertical temperature gradient is produced.

Effect of Stabilizing Thermal Gradients on Natural Convection in a Completely Confined Rectangular Enclosure (안정온도구배가 밀폐용기내의 자연대류에 미치는 영향)

  • 김무현;이진호;장은구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1330-1338
    • /
    • 1989
  • 본 연구에서는 직각밀폐용기의 수평경계면이 단열인 경우뿐만 아니라 등온 조건을 갖는 경우에 대해 실험적으로 연구하여 경계조건의 변화가 직각밀폐용기내 흐름 및 열전달에 미치는 영향, 특히 등온조건을 갖는 경우 수직 온도차에 따르는 안정온도 구배효과로 예상되는 흐름의 억제, 지연효과를 작종 물리적 변수들의 영향과 함께 세밀히 조사하였다.

Bubble-driven Convective Flow in the Liquid with Temperature Gradient (온도구배가 있는 액체 내에서 기포가 유발하는 대류유동)

  • Bae, Dae-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2011
  • Numerical simulation has been performed to investigate the bubbly flow in the liquid with vertical temperature gradient. The objective of this study is to establish an accurate numerical prediction program of gas-liquid two-phase flows in a vertical temperature gradient condition, whose mathematical model is formulated by the Eulerian-Lagrangian model. The present numerical results reveal the temperature mixing mechanism and the fluid dynamical characteristics induced by the bubbly flow in the liquid with stratified temperature. The effects of bubble radius, void fraction, and gas flow rate on bubble-driven convective flow are considered, too.

The influence of temperature gradient and rotation rate on Bi4Ge3O12 crystal growth by czochralski method (쵸크랄스키법에 의한 $Bi_4Ge_3O_{12}$ 단결정 육성에서 온도구배와 회전속도가 미치는 영향)

  • 배인국;황진명
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.585-589
    • /
    • 1999
  • In order to grow $Bi_4Ge_3O_{12}$ crystals by the Czochralski method equipped with the auto-diameter control system, we used the resistance heater of our own design. We measure the temperature gradients under-arious thermal configurations. The relation between the critical rotation rate corresponding to the flat interface and the temperature gadient was investigated, and the importance of the axial temperature gradient was pointed out. The results from this work were compared with those obtained by other authors when RF heating was used. The optimal conditions for the crystal growth were determined as follows; under $O_2$ atmosphere with the pulling rate fixed at 2 mm/hr, rotation rate changed from 30 to 23 rpm as the crystal growth proceeded, radial and axial temperature gradients were 50 and $40^{\circ}C$/cm near melts respectively, and the composition was chemically stoichiometric.

  • PDF

Numerical study of a turbulent plane jet under the pressure gradient in the transverse direction (진행축에 수직방향 압력구배를 받는 난류 평면제트의 수치적 연구)

  • 최문창;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1150-1157
    • /
    • 1988
  • Two-dimensional turbulent plane jet which is under the pressure gradient in the transverse direction is studied numerically. Full Navier-Stokes equations are used to correctly account for the pressure variation in the transverse direction. Using the standard k-.epsilon. turbulence model as a closure relationship, a time marching procedure gives the velocity field. The temperature fields are obtained for two different cases : (1) Hot jet is issued into the cold still air, and (2) Hot jet is issued into the surrounding across which exists a temperature difference. The velocity and temperature fields along with other flow and heat-transfer characteristics for two different pressure gradients are presented. A simple formula that relates the jet trajectory to the pressure gradient is also proposed. The mass flux in the longitudinal direction and the jet halfwidth seem insensitive to the pressure gradient. However, the pressure gradient increases the heat flux in the longitudinal direction as well as in the transverse direction.

Experimental Analysis of Prestressed Approach Slab Behavior (프리스트레스가 도입된 접속슬래브의 실험적 거동 분석)

  • Park, Hee-Beom;Eum, In-Sub;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-164
    • /
    • 2010
  • This research was conducted to analyze the behavior of Single-PTAS (Single Post-Tensioned Approach Slab) under tensioning and environmental loads by performing field tests when the demonstration Single-PTAS was being constructed. The temperature measurement sensors were installed at different depths, and the displacements in the approach slab under environmental loads and tensioning were measured using displacement transducers. As an experimental result, an abrupt change in the longitudinal displacement due to tensioning was not observed. The daily temperature change in the approach slab was negligible where the depth is over about 35cm. The temperature gradient in the approach slab adjacent to bridge was smaller than that adjacent to pavement. The patterns and magnitudes of vertical displacements were directly related to the temperature gradient at the measuring location. The behavior of Single-PTAS was very similar to that of concrete pavement. Therefore, a new design methodology for approach slabs is needed to include the pavement concept and to overcome drawback of current design procedures based on the simple beam concept.

Laminar Convective Heat Transfer in Vertical Square Duct with Variational Symmetric Heat Flux (비균일 대칭성 열Flux인 수직 사각 닥트내의 층류조합대류 열전달 효과)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.1
    • /
    • pp.47-53
    • /
    • 1982
  • An analysis of convection, in a fully developed laminar steady flow through the vertical square duct under the condition of variational symmetric heat flux, is considered. Finite element solution algorithm by Galerkin's method with triangular elements and linear interpolation polynominals for the temperature and velocity profiles are derived for the vertical square duct. The comparison of temperature distribution due to variational symmetric heat flux in the duct were made with available the other data when the condition of peripheral heat flux were uniform and zero. Numerical values for the dimensionless temperatures and Nusselt numbers at selected Rayleigh numbers and pressure gradient parameters were obtained at a few nodal points for the vertical square ducts and effects of corner in the duct were investigated.

  • PDF

Experimental Analysis of Curling Behavior of Concrete Slabs on Grade under Temperature Loading and Underlying Layers' Effects (지반위에 놓인 콘크리트 슬래브의 온도하중 하의 컬링 거동 및 하부층 영향 실험적 분석)

  • Kim, Seong-Min;Park, Hee-Beom
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.171-180
    • /
    • 2008
  • This study was conducted to analyze the curling behavior of concrete slabs on grade under temperature loading through the laboratory tests and to investigate the effects of the support conditions of underlying layers on the curling behavior of the slab on grade systems. For the laboratory tests, the concrete slabs were fabricated and the temperature measurement sensors were installed. The temperature loading was applied intentionally and the time histories of the vertical displacements of the slab at several different positions were measured. One-layered underlying layers were made using different materials and different thicknesses. Two-layered underlying layers were also made to have the same composite stiffness each other, but the material of the upper layer was designed to be different The experimental analysis results showed that the trend of the displacement time histories of the slab was basically the same as that of the temperature gradient time histories. The characteristics of the curling behavior of the slab were analyzed by separating the regions of curling up and curling down. The difference in the vertical displacements at the center and comer decreased as the stiffness of the underlying layer became larger, and the upper layer's material of the underlying layers affected the curling behavior of the slab.

  • PDF

The Growth of $CaF_2$ Single Crystal by Tammann Method (탐만법에 의한 $CaF_2$ 단결정 육성)

  • 장영남;채수천;문희수
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.20-27
    • /
    • 1999
  • CaF2 단결정을 흑연도가니를 사용하여 He 분위기 하에서 탄만법으로 성장시켰다. 수화방지를 위해 PbF2를 출발물질에 도포하였다. 열구배에 따른 계면의 움직임인 성장속도는 배플판에 의해 성공적으로 조절되었다. 결정성장의 최적조건은 온도구배가 37℃/cm, 냉각속도가 10℃/hr 및 2.5tw% PbF2를 사용한 경우로, 성장속도는 약 3.2 mm/hr이었으며, 위로 볼록한 고액계면을 갖는 단결정이 성장되었다. IR분석 결과, 1500∼4000 cm-1(6.7∼2.5 ㎛)영역에서 약 96%의 투과도를 보였다. 결함밀도를 측정하기 위해, 성장축에 수직 및 수평으로 절단한 면을 농축 H2SO4에서 약 30분간 에칭하여 간섭현미경으로 관찰한 결과, 각각 3.4×104/cm2였다. 이러한 결과는 수화에 따른 성장된 단결정의 투명도의 경향과 일치하였다. 결정에 대한 XRD분석 결과 우선성장 방향은 <311>이었다.

  • PDF

Effects of stabilizing temperature gradients on thermal convection in rectangular enclosures during phsysical vapor trnasport (승화법에 의한 단결정성장공정에서 이중온도구배가 대류현상에 미치는 영향)

  • 김극태;최장우;이민옥;권무현;권순길
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.94-100
    • /
    • 1999
  • Mercurous chloride($Hg_2Cl_2$) crystals hold promise for many acousto-optic and opto-electronic applications, which are prepared in closed ampoules by the physical vapor transport(PVT) growth methods. The thermal boundary conditions established by imposing different temperature on sidewalls of the enclosure cause simultaneous horizontal and vertical convectie flow in the PVT processes of$Hg_2Cl_2$ . It is found that for the ratios of horizontal to vertical thermal Rayleigh numbers$Ra_H/Ra{\ge}1.5$, the convective flow structure changes from multicellular to unicellular for the base parametric state of Ra=($2.79{\times}10^4$) , Pr=0.91, Le=1.01, Pe=4.60, Ar=0.2 and$C_V =1.01$. For the $\Delta T^{*}_H$ greater than 0.3, the $$\mid$U$\mid$_{max}$is increased with increasing $\Delta$ T^{*}_H$ and decreasing the aspect ratio. For the aspect ratios ranging from 0.1 to 1.0, there is a direct and linear relationship between $$\mid$U$\mid$_{max}$ and $\sqrt{{\Delta}T^_H\;^{\ast}}$.A decrease in the aspect ratio destabilizes the convective flow and results in an increase of the magnitude of convection in the crystal growth reactor. The vertical gradient tends to destabilize the convective flow which leads to oscillations, whereas the horizontal gradient stabilizes the convection.

  • PDF