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Laminar Convective Heat Transfer in Vertical Square
Duct with Variational Symmetric Heat Flux

Si-young Kim+

An analysis of convection, in a fully developed laminar steady flow through the vertical
square duct under the condition of variational symmetric heat flux. is considered. Finite
element solution algorithm by Galerkin’s method with triangular elements and linear interpolat-
ion polynominals for the temperature and velocity profiles are derived for the vertical square
duct.

The comparison of temperature distribution due to variational svmmeiric heat {flux in the
duct were made with available the other datas when the condition of peripheral heat {lux were

uniform and zero. Numerical values for the dimensionless temperatures and Nusselt numbers at

selected Rayleigh numbers and pressure gradient

parameters were obtained at a few ncdal

points for the vertical square ducts and effects of corner in the duct were investigated.

Introduction

The problems of incompressible laminar steady
flow convection in vertical duct, under the con-
dition of constant axial and variational symm-
etric peripheral wall heat flux. has important
application in heat exchanger and heat transm-
ission where design consideration may make
Although nu-

merious studies on this prcblems have been co-

duct with successful production.

nducted both theoretically and experimentally,
the analytical solutions have been confined to
ducts under condition uniform peripheral wall
temperature{Han, 1959) and heat flux(Ayglaw-
ala, 1963). For more complicated boundary
conditions, where analytical solutions are not
possible, recent development in numerical tec-
hniques suggest that it can be best handled by
means of the finite element methods(FEM) for
the zero heat flux({Giudice, 1978) and uniform
heat flux (Navak, 1975).

Recently, the problem of laminar convective
flow for the vertical circular duct under the
condition of variational peripheral heat flux
(Chei, 1981) was studied by means of the f{inite
element method. In this paper, finite element
solutien algorithm with triangular elements
and piecewise linear interpolation polynominals
for the temperature and velocity profiles were
derived for the vertical square duct with varia-
tional symmetric heat flux. The governing
equations of the problem was formulated by
Galerkin’s method (Segerlined, 1976; Huebner,
1975).

By the specifying of the vertical square duct
due to the boundary condition and other param-
eter of Rayleigh numbers and pressure gradie-
nts, numerical values for the temperature distr-
ibutions, velocity and Nusselt numbers in the
duct with varying boundary conditions were
obtained. Comparison of these numerical results
with the other FEM soultions, in which the
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peripheral heat flux are uniform (Nayak. 1973)
and zero (Giudice.1978), show that they have a
good agreement. The behavior of the heat tra-
nsfer in vertical square duct with variational
symmetric heat flux due to variation of the
Rayleigh numbers, pressure gradient parameters

in nodal points and corner effects were suggested.

Governing Equations and
Boundary Conditions

As n (Novok., 1973), the mathematical for-
mulation of the problem is based on the follo-
wing assumptions;

1. The fluid assumed to be viscous and heat
conducting and in a steady motion.

2. Fully developed velocity and temperature
prefiles are assumed.

5. Fiuoid properties are assumed to be constant.
except the density is linear te and varying with
temperature.

4. Frictional heating due to viscous is neg-
lected.

e. Z-

6. Heat input in the axial direction, i.

direction is constant.
7. Heat flux in peripheral wall is assumed to
be variation.

For a fully developed incompressible laminar

flow, the momentum equation (Ansari, 1970)
in a Z-direction gives
G2w* i Lodpt
*‘(W%‘— »*>=P"‘g Rt e))

With the condition #*=:%*=0 for the r and »
direction. the assumptions (3) and (6) the en-

ergy equation becomes

g eTE L TE T o, 0T )
kit e T Eet et ()

For a fully developed temperature profile and
constant axial heat flux, the wall temperature
(Shimazaki, 1031) is given by
T 2%) - 85(w%, 3%, (&)
Substituting equation (3

TR, g%,

into equation (1)

and (2) ard asumming the density varies line-

arly with tempzrature, the density is of the
form
pre=p ST =T, )0 H

We have

— N 3 i =
b, ()

The boundary conditions wr form fer a

vertical square duet with variztional symmetric

heat flux

Fege =I5, (7

We shall now introduce the (oilowing dime-

nsionles: varizples(lghal, 137450

T= T y=3/d,
[ A VRN S S {(3)
where

is the mean vetoadioy in the Z-direction, nd
d=4A/F in the with 4
denoting the cross ’ is the
perimeter ot the duct.
Equation (5) and () in dimensionless form
are given by
d2uw
K ®
. 6
e +—0:‘72-~:U=O_ (1e)

Where L and R, are respectively the pressure
gradient parameter and the Rayleigh number
given by L=—d?dp¥/deyLp Xg/pw,® and R.=
p*2ge,cBdt/uky. The Loundary conditions in term

of dimensionless varialles are

w=0 —- =7{x, 3°). (1Y

Application of Finite Element
Method

With the

piecewise linear interpolation

trianguler element, we assume
polynominals for
velocity and temperature distributions in Fig. 1.

Thus we have
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we(x, ¥)= BNiCx,yIwi= (N) fwe) (12)
t4(x, 3)=ENiGwm )= (Ne) e (13)
where {we}, {t} and (N¢] are column matrix
given by
w; t;i
{we} = {w,- } (14) {te} = [’;‘ ] (15)
w ), L),
a; b, ¢ 1
V= { a b e 4 (16)
ay by o yJ,

where A.E%_Ix;,-yj,,—xj,y,-jl is the area of the

triangular element and x;=x,—x;, y;=y,~y,,

Gi=XYy~%4¥j, bi=y;j—yy, ci=xy—2x; with the

indices (i, j, k) permute cyclily in the elements.

For a formulation of the finite element method.

it will be convenient to use the Galerkin’s me-
thod(Segerlind, 1976; Huebner, 1975).
With the aid of the scheme,

can be written as

o o2 ()47 (5)

equation (10)

—w'dedy:O Qan
where
3 (o B8 Bt GINT
W(CN i ox ) (NT oz T ox
ote
e (18)
g BB Gy )
N = (N5 )=

ate
Neyr %
(N7 —— (19)
Substituting equation (18) into equation (19),

it can be shown that

ﬁomm vxz dxdy ﬁu( ) 0% ([N]T

axe GINT  ote
)dxd "ﬂ,,(, o —-dxdy  (20)

Now, if we use the Gauss theorem (Segerlind,

1976), equation (20) can be written as

ﬁomck([h) _dedy fﬁ (NeJT ax

Isde (21)
Similarly, we also have
Ny E SG N
e —— — €
.U.D(z)[ ] ay? @y sie) ¢
a!’Nt]T atﬁ
! e __ I = Al
*ds SSD(c) oy oy 4%y 22

2%

3

@
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Fig.1 Subdivision of a square duct into trian-
gular finite elements of unequal size.

Rewriting equation (17) and simplifying gives
BNOT e ANOT e
L e e Tl
Tlwey d —
+§SD(¢)[N‘] lwey dxdy §s(!)
ate
(Ne)T——d #=0.
(23)

Then

ote ) . ote 0
Hr = ax [Nefte} , —— =—-ay EN'] {te} (24)
and

oy
§ [Nc]T.a_t‘;d ¢=q§ [N‘]Td e (25)
s(e) an ° s(e) s
Similary, substitution of the same method

into equation(9) with the boundary condition,

w=0, it can be written as

3(NeIT  3[Ne)
HD(.)( ax

57 NeaT

ax {we) +-255-2
TN
~——{u=}dxdy Rﬁ [ (NOTCNYdxdy

ay

"'I‘_UM.) (NeJdxdy=0. 7

It will beconvenient to rewrite the equation
(23) and (27) in the matrix form as

[Fe2 {we) —R,(Me] (s} = L{B¢} (28)
(M) {we} - (Fel {te) =q{Q") (29)
where
bib; e Ae A
=T 4Ae ’ Mi:‘"ﬁ’ Bi:T
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Fig.2 Energy balance on a differential transi-

ent volume.

Q,-:.%,ds’ (30)
To express average temperature in term of

nodal peint velocities and temperatures, we

note that the values can be written as

El SA,u"t' dxdy

tm=
% (] dwy (31)
e-lJJ A

For the condition of peripheral constant heat

flux in Fig.2, the boundary conditions gives
b =g (32)
an*
At Jan=gq/p*cpcun*d (33)
hence
g=Ap¥ cpwn* c/p. 3D
Substition of equation (34) into equation (33)
yields
Jt
—-=A/pd=0.25 (35)

and for the variational symmetric heat flux in
the vertical square duct, the values are
q=0.5(1—x).

We note that the
duct can be written as

Nusselt number for the

e wey 0-9F(x%3¢)
Ny=(x*, ¥ )—-W (36)
where
Ate(xs, yo)=te(xe, y*)—tp. (37

Results and Discussion

The {imite element solution algorithm derived

in the previous section is applicable to vertical
square duct. By using the location of the interior
and boundary the values of i, j, and % for the
each element as well as R,, L, and variational
symmertic heat flux of temperature, velocity
and Nusselt number for the duct with quarter
of the cross section. To obtain the values of
the duct, calculation were carried out variati-
onal heat flux, 0.5(%,%). The subdivision of a
square duct into triangular finite elements can
be done in many different ways.

But we divided into triangular elements, 25,
and the duct are shown in Fig. 1(with elements
of unequal size). The FEM solutions were cal-
culated for a few selected set of parameters
R, and L taken from the datas(Choi, 1981).
The result for the temperature distributions
under the condition of constant heat flux(Nay-
ak, 1975) and zero(Giudice, 1978) are compared
with the analysis as the shown in Table 1 and
Fig.3. The FEM solutions have agreement in
the nodal points 21 and 11.

But the values increased proportional to the
heat flux at other points. In order to investig-
ate heat transfer for the laminar covective in
the vertical square duct with variational sym-
metric heat flux, the subdivision of the duct
are shown in Fig. 1.

Numerical results for the dimensionless temp-
erature and Nusselt number, N, at selected

Rayleigh numbers and pressure gradients were

Table 1 Comparison of the values(Nayak,
1975) and FEM solutions for the
temperatures in the square duet(25

nodes) for the nodal points(R,=100
nt, L=441.8, ¢=0.5(1—%)

Nodal point FEM(25 nodes) Nayak, 1975

(Fig. D _
1 0.1237 —0.0625

7 0. 9874 —0.0420

12 3. 1266 0. 0830

13 1.1362 0.1182

17 ~0.0781 —0. 0420

21 —0.0625 —0.0625
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Fig. 3 Effect of circumferential heat flux vari-
ation in a square duct. (R,=1, L=32.06)

8 &
6 3
4 2

2 11
t
Nu(x) -gi;
0 0
-2 11
- L 2

[l L -
0 025 05 075 1
X—
Fig.4 Effect of circumferential heat flux var-
iation in a square duct. (R,=100, L=
37.69)

Fig.5 Effect of circumferential heat flux vari-
ation in a squareduct. (R,=1,000, L=
85. 45)
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Fig.6 Effect of circumferential heat lfux vari-
ation in a square duct. (R,=10,000, L=
441.8)
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compared with zero heat flux (Giudice, 1978).
As it can be seen, the values have a good agr-
eement at R,, 1 and L, 32.06 in Fig.3.

The temperatures and Nusselt numbers distr-
ibution over the square duct at selected R,
numbers and pressure gradient parameters are
shown in Fig.4.5,6. In all cases the calculated
dimensionless temperatures and Nusselt numbers
were found to proportion at the selected Rayl-
eigh number. R, and pressure gradient, L.This
tendency may be to some variable convection,
some partially development laminar pressor,
temperatures and heat flux in the duct. The
discrepancy in the corner for the duct is of
such a nature that it probably could be compe-
nsated for by the boundary layer theory due to
rounding.

The temperatures and Nusselt numbers were
Such a

appear, if we

found to lag slightly in the corner.
correlation, however, does not
can be able to make rounding in the limited

range of the square duct.

Conclusions

From the finite element mehtod solutions in
laminar convective heat transfer in vertical
square duct with variational symmetric heat flux,
the following results were obtained.

1. The agreement was found to be satisfact-
ory between this solutions and other available
datas when the heat flux were uniform or
zero.

2. The

proportionzal to the heat flux and the maximum

temperature distributions vary with

Nusselt numbers were found at near 0.7.

3. The Nusselt numbers slightly lag on decre-
ase in duct depend on the velocity and tempera-
ture by the corner effects.

4, The dimensionless temperatures and the
Nusselt numbers vary with Rayleigh numbers

and pressure gradient parameters.
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