• Title/Summary/Keyword: 수직지지력

Search Result 109, Processing Time 0.022 seconds

Analysis of Vertical and Horizontal Behavior of Helical Piles in Sands Varying Helix Shapes and Locations (사질토에서의 헬릭스 형상 및 위치에 따른 헬리컬 파일의 수직 및 수평 거동 분석)

  • Bae, Jonghwan;Lee, Junwon;Shin, Sehee;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.393-400
    • /
    • 2020
  • Axial and lateral behavior of helical piles is generally influenced by number, diameter, helix pitch, and locations of helices. In this study, axial and horizontal behavior of helical piles with three helices was investigated varying helices' locations, diameter, and pitch. Especially, due to the spiral shapes of helices, the effect of lateral load directions at pile heads on their lateral behavior was investigated. Axial load test of small-scale helical pile was conducted in laboratory, and its results were compared with numerical analysis results of the same model for cross check of validity of both results. Furthermore, diverse numerical analyses were performed for different shapes of helical piles. Consequently, it was found that, for the given analysis conditions, the helix diameter was the most influential factor on the horizontal and vertical behavior of helical piles.

Experimental Behavior Characteristics of 2×2 Group Pile under Lateral Loads (수평하중을 받는 2×2 무리말뚝의 실험적 거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.5-16
    • /
    • 2018
  • In this study, the large scale laboratory model tests were executed to investigate the lateral resistance characteristics of $2{\times}2$ group pile under lateral loads according to the array method and installation angle of piles. The effect on the behavior of $2{\times}2$ group pile was also investigated through model tests varying the pile diameter and length, distance to pile top from the ground surface, center-to-center (CTC) length and surcharge etc. From these test results, it was found that the lateral resistance of $2{\times}2$ group pile of which piles were constructed slantly in both directions was greater than that of group pile of which piles were constructed vertically. And as a result of parameter tests on the lateral resistance of $2{\times}2$ group pile, it was found that the most important parameter was the pile length. As the embedment depth ratio (L/D) increased to 36.5 from 26.5, the lateral resistance increased 3~4 times or more. But the center-to-center (CTC) length, distance to pile top from the ground surface and surcharge did not affect much on the lateral resistance of group pile.

Study of Ground Reinforced Effect using the Porous Geocell (다공성 지오셀을 이용한 지반 보강효과에 관한 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Kim, Young-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • The laboratory tests and field plate load test were carried out to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comparison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. The settlement and the distribution of deformation were also estimated by using the finite element method. The magnitude of settlements on the geocell-reinforced subgrade and unreinforced subgrade are 6.8cm and 1.2cm, respectively.

  • PDF

A Study for Adfreeze Bond Strength Developed between Weathered Granite Soils and Aluminum Plate (동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구)

  • Lee, Joonyong;Kim, Youngseok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.23-30
    • /
    • 2013
  • Bearing capacity of pile is governed by only skin friction in frozen ground condition, while it is generally governed both by skin friction and end bearing capacity in typically unfrozen ground condition. Skin friction force, which arises from the interaction between pile and frozen soils, is defined as adfreeze bond strength, and adfreeze bond strength is one of the most important key parameters for design of pile in frozen soils. Many studies have been carried out in order to analyze adfreeze bond strength characteristics over the last fifty years. However, many studies for adfreeze bond strength have been conducted with limited circumstances, since adfreeze bond strength is sensitively affected by various influence factors such as intrinsic material properties, pile surface roughness, and externally imposed testing conditions. In this study, direct shear test is carried out inside of large-scaled freezing chamber in order to analyze the adfreeze bond strength characteristics with varying freezing temperature and normal stress. Also, the relationship between adfreeze bond strength and shear strength of the frozen soil obtained from previous study was analyzed. The coefficient of adfreeze bond strength was evaluated in order to predict adfreeze bond strength based on shear strength, and coefficients suggested from this and previous studies were compared.

A Preliminary Design of Mooring System for Floating Wave Energy Converter (부유식 파력발전장치용 계류시스템의 초기설계)

  • Jung, D.H.;Shin, S.H.;Kim, H.J.;Lee, H.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.184-191
    • /
    • 2011
  • Preliminary design of a mooring system for a floating wave energy converter(WEC) is performed. A mooring line is designed to consist of two parts; the one is a chain in heavy weight laid on the seabed and linked to an anchor on the seabed and the other is a light weight chain suspended at a floater. A high weight chain laid on the seabed can contribute to mitigate dynamic energy propagated from top oscillation and decrease anchor weight and volume. Through a low weight chain suspended between a floater and seabed the WEC's function to produce energy from wave can be affected in minimum by the motion of a chain. The static and dynamic analyses for the designed mooring system were carried out to evaluate WEC system's safety. The present study shows that the designed gravity anchor moves horizontally due to the tension exerted on the anchor in the severe ocean environmental condition. The present mooring system should be redesigned to satisfy the safety requirements. The present study will be useful to predict the safety of the mooring system under ocean environment.

Power Transmission from a Vibrating Mass to a Supporting Elate through Isolators (능동 및 수동격리기를 적용한 진동계에 있어서 힘의 전달에 관한 연구)

  • Jin-Woo Lee;Colin H. Hansen
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.200-207
    • /
    • 2001
  • The transmission of harmonic vibratory power form a vibrating rigid body into a supporting plate through passive and active isolators is investigated theoretically and experimentally. The theoretical model allows for the transmission of vertical and horizontal harmonic forces and moments about all three coordinate sun. The experiment is to use vibration actuators attached to the intermediate mass of the two-stage mount to minimize the rotational and translational vibration of the intermediate mass. The performance is done by measuring the vibration at the error sensors due to the primary vibration source and measuring the transfer functions from the control sources to the error sensors. Results show that over a frequence range from 1 to 100Hz, transmission into the supporting plate can be reduced substantially by employing in parallel with existing passive isolators, active isolators adjusted to provide appropriate control force amplitudes.

  • PDF

Optimization of Flask Fixtures for Marine Propellers Castings (선박용 프로펠러 주조시 주형 지그 최적화)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3334-3338
    • /
    • 2012
  • This work has been performed to evaluate the strength of fixtures, which were attached to outer surface of propeller flask to prevent transient movement during filling and cooling stages at Ni-Al-Bronze casting of large marine propellers. Experimental work was carried out to evaluate forces exerted on flask fixtures by measuring strain changes of fixtures due to thermal expansion and contraction during casting processes. Numerical analyses were also made to verify the experimental results and finally to evaluate the validity of arrangement of flask fixtures for casting of marine propellers.

SNS planning through analysis of office workers SNS use (직장인의 SNS 사용 분석을 통한 SNS 기획)

  • Kim, Eun-Ju;Hong, Soon-Geun;Hwang, Chan-Gyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1359-1364
    • /
    • 2013
  • After platform changed from PC-based internet to mobile, SNS became new interactive media which relaces face-to-face interaction. the SNS users have already begun to recognize SNS as daily necessity. SNS market has been subdivided. In other words, SNS has entered into a period of vertical SNS that focus on contents and specific target. Therefore, It is necessary to analyze users for SNS planners. For this reason, analyzing why office workers who have the most powerful purchasing power use SNS is meaningful for SNS planners. Therefore, in this study, we analyzed the reasons for using SNS of office workers by studying relationship among office workers' stress, social support, self-expression and the use of SNS. As a result, the use of SNS has a significantly positive correlation with social support and self-expression. The self-expression in the SNS is not associated with stress, but rather it is the characteristics of the office workers. However the social support in the SNS affects to stress.

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure (동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구)

  • Ko, Sung-Gyu;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.67-76
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.